Math 4242	Name (Print):	
Summer 2020		
PRACTICE EXAM		
07/10/2020		
Time Limit: Up to you	Instructor	

Exam 2 contains 3 pages (including this cover page) and 10 problems. Please check to see if any pages are missing.

There are 10 problems instead of 5, but break up this exam into 2 parts 1-5 and 6-10, if you want to practice exams more authentically.

Show your work on each problem. Specifically:

- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Unsupported answers will not receive credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations will likely receive partial credit.
- **Circle your final answer** for problems involving a series of computations.
- If you need more space, use the back of the pages; clearly indicate when you have done this.

Please do not write in the table to the right.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
7	20	
8	20	
9	20	
10	20	
Total:	200	

- 1. (20 points) Let A be any square matrix in $\mathcal{M}_{n \times n}(\mathbb{R})$.
 - (a) (5 points) Show that the quadratic forms $x^T A x$ and $x^T A^T x$ are equal.
 - (b) (5 points) Show that $K = \frac{1}{2}(A + A^T)$ is a symmetric matrix.
 - (c) (5 points) Conclude that it suffices to only consider quadratic forms of symmetric matrices by showing that $x^T A x = x^T K x$.
 - (d) (5 points) Prove that if K is positive definite, then every diagonal entry of A is positive.
- 2. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation

$$T\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-x+4y\\2y\end{pmatrix}.$$

Rewrite this transformation using coordinates in the basis $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$.

3. (20 points) Let f(x) = 1 and g(x) = ax for $a \neq 0$ in the vector space $C^0[0,1]$ with inner product

$$\langle f,g\rangle = \int_0^1 f(x)g(x)\,dx.$$

- (a) (10 points) Find the $a \in \mathbb{R}$ such that the angle between f and g is $\pi/6$, or 30 degrees.
- (b) (10 points) Does your answer change if f(x) = b for some other $b \neq 0, 1$? Explain why or why not.
- 4. (20 points) Let v and w be independent vectors in \mathbb{R}^n . Let v^{\perp} and w^{\perp} denote the orthogonal subspaces of span(v) and span(w). Show that dim $(v^{\perp} \cap w^{\perp}) = n 2$.
- 5. (20 points) Find an orthonormal basis for the subspace

$$W = \operatorname{span} \left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\-2\\4\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\-1 \end{pmatrix} \right\}.$$

- 6. (20 points) Let $P = I uu^T$ where u is a unit vector in \mathbb{R}^n with the dot product.
 - (a) (10 points) Show by direct computation that $P^2 = P$.
 - (b) (10 points) Compute $(img(P))^{\perp}$.
- 7. (20 points) Find the distance between v = (0, 3, -2, -2) and w = (4, -1, 2, 1) in the following norms on \mathbb{R}^4 .
 - (a) (6 points) The L^2 norm
 - (b) (7 points) The L^1 norm
 - (c) (7 points) The L^{∞} norm
- 8. (20 points) For the following statements, list whether they are true or false. If false, provide a counterexample.
 - (a) (5 points) All matrices with positive entries are positive definite.
 - (b) (5 points) Let $A = \begin{pmatrix} 0 & 3 \\ -1 & -4 \end{pmatrix}$. Then $||A||_{\infty} = 5$.
 - (c) (5 points) All norms satisfy the parallelogram identity.
 - (d) (5 points) Let A and B be $n \times n$ matrices representing the same transformation $\mathbb{R}^n \to \mathbb{R}^n$ in two different bases. Then det $A \neq \det B$.
- 9. (20 points) Let $T: V \to W$ be a linear transformation. Define the kernel of T to be

$$\ker(T) = \{ v \in V \mid T(v) = 0 \}.$$

- (a) (10 points) Show that ker T is a subspace of V. (Notice this is a generalization of the matrix case.)
- (b) (10 points) Assume that ker T = 0. Show that if T(v) = T(w), then v = w.
- 10. (20 points) Prove that a matrix K is positive definite iff for all nonzero $v \in \mathbb{R}^n$ that the angle θ between v and Kv is acute, i.e. $|\theta| < \pi/2$.