
MATH 4242, Section 001 Homework 8 Summer 2020

1. Let A be any square matrix in Mn×n(R).

(a) (5 points) Show that the quadratic forms xTAx and xTATx are equal.

(b) (5 points) Show that K = 1
2(A+AT ) is a symmetric matrix.

(c) (5 points) Conclude that it suffices to only consider quadratic forms of symmetric matrices by
showing that xTAx = xTKx.

(d) (5 points) Prove that if K is positive definite, then every diagonal entry of A is positive.

Solution. (a) This follows from the fact that the dot product is symmetric.

xTAx = x ·Ax = Ax · x = (Ax)Tx = xTATx

(b) This is symmetric by the fact that constants come out of transposes and that the transpose
twice is the original matrix.

KT =
1

2
(A+AT )T =

1

2
(AT + (AT )T ) =

1

2
(A+AT ) = K

(c) By the first two parts

xTKx = xT
(

1

2
(A+AT )

)
x =

1

2

(
xTAx+ xTATx

)
=

1

2

(
2xTAx

)
= xTAx.

(d) If K is positive definite, then xTKx > 0 for all nonzero x. In particular, let x = ei. On the one
hand eTi Aei = aii, the ith diagonal entry. But on then other hand eTi Aei = eTi Kei > 0. Therefore
aii > 0.

2. Let T : R2 → R2 be the transformation

T

(
x
y

)
=

(
−x+ 4y

2y

)
.

Rewrite this transformation using coordinates in the basis

(
1
0

)
and

(
4
3

)
.

Solution. First, we cna notice that this is a transformation in standard coordinates given by

A =

(
−1 4
0 2

)
.

By the change of basis formula, the transformation is represented by a matrix B = S−1AS in
coordinate v1 = (1, 0) and v2 = (4, 3), where

S =

(
1 4
0 3

)
.

Computing this term out

B =

(
−1 0
0 2

)
.

3. Let f(x) = 1 and g(x) = ax for a 6= 0 in the vector space C0[0, 1] with inner product

〈f, g〉 =

∫ 1

0
f(x)g(x) dx.
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(a) (10 points) Find the a ∈ R such that the angle between f and g is π/6, or 30 degrees.

(b) (10 points) Does your answer change if f(x) = b for some other b 6= 0, 1? Explain why or why
not.

Solution. (a) Recall that ‖1‖ ‖ax‖ cos(θ) = 〈1, ax〉, so that

cos(θ) =
〈1, ax〉
‖1‖ ‖ax‖

=

∫ 1
0 ax dx√∫ 1

0 1 dx
√∫ 1

0 a
2x2 dx

=
1
2a

1
√

a2

3

=

√
3

2

a

|a|
.

Note that if a > 0, then a/|a| = 1 and if a < 0 then a/|a| = −1. But cosπ/6 =
√

32 so we want the
positive solution. Therefore for all a > 0, then the angle between f = 1 and g = ax is θ = π/6.

(b) We can answer this question using the general principles of inner products. Indeed

cos(θ) =
〈b, ax〉
‖b‖ ‖ax‖

=
ab〈1, x〉

|a||b| ‖1‖ ‖x‖
=

√
3

2

a

|a|
b

|b|
.

Therefore we see that a and b have the same sign, then the angle is 30 degrees, and if they have
opposite sign, the angle is 150 degrees. This makes sense geometrically. The angle between v and w
should be the same as with v and cw for c > 0. And if c < 0, then the angle becomes π− θ. Scaling
these vectors shouldn’t change the angle unless the scale changes the sign. This principle is just
being applied to functions in this problem.

4. Let v and w be independent vectors in Rn. Let v⊥ and w⊥ denote the orthogonal subspaces of
span(v) and span(w). Show that dim (v⊥ ∩ w⊥) = n− 2.

Solution. Indeed v⊥ ∩ w⊥ = span(v, w)⊥, namely the subspace of vectors orthogonal to both v and
w. Putting v and w into the columns of an n× 2 matrix A, we know that

v⊥ ∩ w⊥ = span(v, w)⊥ = kerAT .

Since v and w are independent, the rank of AT is 2, and therefore the kernel has dimension n− 2
by rank nullity. This completes the proof.

5. Find an orthonormal basis for the subspace

W = span




1
0
1
0

 ,


0
−2
4
0

 ,


0
0
0
−1


 .

Solution. This is the Gram-Schmidt process. We can do the normal version, and then divide the
resulting orthogonal basis by the vectors’ norms to get an orthonormal one. First

v1 = w1 =


1
0
1
0

 .

Then

v2 = w2 −
w2 · v1
‖v1‖2

v1 =


2
−2
2
0

 .
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Actually by inspection, the third vector is already orthogonal to these two. Therefore v3 =
(0, 0, 0,−1). Therefore an orthonormal basis is

1√
2

0
1√
2

0

 ,


1√
3

− 1√
3

1√
3

0

 ,


0
0
0
−1

 .

6. Let P = I − uuT where u is a unit vector in Rn with the dot product.

(a) (10 points) Show by direct computation that P 2 = P .

(b) (10 points) Compute (img(P ))⊥.

Solution. (a) Note that since u is a unit vector, then uTu = 1. Therefore

P 2 = (I − uuT )(I − uuT ) = I − 2uuT + (uuT )(uuT ) = I − 2uuT + u(uTu)uT

= I − 2uuT + uuT = I − uuT = P.

(b) By the relationship between the fundamental subspace, (img(P ))⊥ = cokerP = kerP T . First,

P T = (I − uuT )T = IT − (uuT )T = I − (uT )TuT = I − uuT = P.

Turns out P is symmetric. Therefore, we need to find kerP . In fact span(u) = kerP . If we let
w ∈ kerP , then (I − uuT )w = 0. But expanding this out gives that equation w − uuTw = 0, which
tells us that

W = u(uTw) = au

where a = u · w. Therefore w must be a multiple of u. Furthermore u ∈ kerP , since

(I − uuT )u = u− u(uTu) = u− u = 0.

Therefore img(P )⊥ = kerP is the span of u.

7. Find the distance between v = (0, 3,−2,−2) and w = (4,−1, 2, 1) in the following norms on R4.

(a) (6 points) The L2 norm

(b) (7 points) The L1 norm

(c) (7 points) The L∞ norm

Solution. This distance between two vectors is always ‖v − w‖. To make this easier, v − w =
(−4, 4,−4,−3).

(a) ‖(−4, 4,−4,−3)‖2 =
√

16 + 16 + 16 + 9 =
√

57
(b) ‖(−4, 4,−4,−3)‖1 = | − 4|+ |4|+ | − 4|+ | − 3| = 15
(c) ‖(−4, 4,−4,−3)‖∞ = max{| − 4|, |4|, | − 4|, |3|} = 4
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8. For the following statements, list whether they are true or false. If false, provide a counterexample.

(a) (5 points) All matrices with positive entries are positive definite.

(b) (5 points) Let A =

(
0 3
−1 −4

)
. Then ‖A‖∞ = 5.

(c) (5 points) All norms satisfy the parallelogram identity.

(d) (5 points) Let A and B be n× n matrices representing the same transformation Rn → Rn in
two different bases. Then detA 6= detB.

Solution. (a) False,

(
1 2
2 1

)
is not positive definite. The quadratic form is x2 + 4xy + y2, which is

not positive when (x, y) = (1,−1), since q(1,−1) = 12 +−4 + 12 = −2.
(b) True, the infinity norm on matrices is the max row sum, which in this case is 5. (You can just
put true, thought I’d just explain here.)
(c) False, the L1 norms and L∞ norms do not satisfy the parallelogram identity. Take V = R2 with
the L1 norm. If v = (1, 0) and w = (0, 1) then

‖v + w‖21 + ‖v − w‖21 = 8

but
2 ‖v‖21 + 2 ‖w‖21 = 4.

(d) False, they in fact are always equal determinants.

detB = detS−1AS = detS−1 detAdetS =
1

detS
detAdetS = detA.

We’ve done this exercise, but now you know what it’s for! The determinant of a transformation
doesn’t depend on what coordinates you use.

9. Let T : V →W be a linear transformation. Define the kernel of T to be

ker (T ) = {v ∈ V | T (v) = 0}.

(a) (10 points) Show that kerT is a subspace of V . (Notice this is a generalization of the matrix
case.)

(b) (10 points) Assume that kerT = 0. Show that if T (v) = T (w), then v = w.

Solution. (a) We show that kerT is nonempty, closed under sums, and closed under scalar multipli-
cation. First 0 ∈ kerT , since T (0) = 0 always. Second, if T (v) = 0 and T (w) = 0, then

T (v + w) = T (v) + T (w) = 0 + 0 = 0

so that v + w ∈ kerT . Finally
T (cv) = cT (v) = c · 0 = 0

so that cv ∈ kerT . Therefore kerT is a subspace.

(b) Note that T (v)−T (w) = T (v−w) so that if T (v) = T (w), then T (v−w) = 0. So v−w ∈ kerT .
But kerT = 0, so that v − w = 0. Therefore v = w as desired.
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10. Prove that a matrix K is positive definite iff for all nonzero v ∈ Rn that the angle θ between v
and Kv is acute, i.e. |θ| < π/2.

Solution. Remember that an angle θ is acute iff cos(θ) > 0, since cos is positive only when
π/2 < θ < π/2. Furthermore if θ is the angle between v and Kv, then θ is acute iff

cos(θ) =
〈v,Kv〉
‖v‖ ‖Kv‖

=
v ·Kv
‖v‖ ‖Kv‖

=
vTKv

‖v‖ ‖Kv‖
> 0

So we need to show that K is positive definite iff

vTKv

‖v‖ ‖Kv‖
> 0

for all nonzero v ∈ Rn.

This is a bit more straightforward. If K is positive definite, then vTKv > 0. Furthermore Kv 6= 0,
since being positive definite implies that K is invertible, which implies that kerK = 0. Therefore
this fraction is well defined (no dividing by 0), since ‖v‖ > 0 and ‖Kv‖ > 0. Since the numerator
and denominator are both positive, then entire fraction is strictly positive as well.

Conversely, If the fraction is strictly positive, then it is well-defined (no dividing by 0). We know the
denominator is then positive since it is the norms of some vectors, and norms are always positive.
Finally since the whole fraction is positive, and so is the denominator, then the numerator must be
positive for all v 6= 0. Therefore vTKv > 0 for all v 6= 0 and by definition K is positive definite.
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