MATH 4242 Exam 2 Study Guide

Exam 2 will roughly cover 3.1-3.4, 3.6, 4.1-4.4, and 7.1-7.2 in Olver and Shakiban.

Topics

• inner product on a real vector space	(3.1)
• dot product on \mathbb{R}^n	(3.1)
$ullet$ weighted dot product \mathbb{R}^n	(3.1)
• inner product on function vector spaces	(3.1)
• norm from an inner product	(3.1)
• Cauchy-Schwartz inequality	(3.2)
• Triangle inequality	(3.2)
• orthogonal vectors	(3.2, 4.1)
• angle between two vectors	(3.2)
• norm in general	(3.1, 3.3)
• L^1, L^2, L^{∞} norms on \mathbb{R}^n and $C^0[a, b]$	(3.3)
• unit vectors	(3.3)
• unit spheres	(3.3)
• equivalence of norms	(3.3)
- just the statement of Thm 3.17, nothing beyond that	
• matrix L^{∞} norm	(3.3)
\bullet positive definite matrix, positive semi-definite matrix	(3.4)
• quadratic form $x^T K x$	(3.4)
• Gram matrix	(3.4)
• complex number	(3.6)
• complex conjugate	(3.6)
• complex inner product space	(3.6)
• orthogonal and orthonormal bases	(4.1)
• Gram-Schmidt	(4.2)
• alternate Gram-Schmidt	(4.2)
• orthogonal matrix	(4.3)
• QR factorization	(4.3)
• vector orthogonal to a subspace	(4.4)
• orthogonal projection	(4.4)
• orthogonal subspaces	(4.4)
\bullet orthogonal complement W^\perp	(4.4)
• cokernel, coimage of a matrix	(2.5)
• linear function $T: V \to W$	(7.1)
• change of basis formula	(7.2)

Theorems

- \bullet Cauchy-Schwarz Inequality, Thm 3.5
- Triangle Inequality, Thm 3.9
- \bullet Theorem 3.17
- \bullet Theorem 3.20
- \bullet Def 3.23, Theorem 3.24
- \bullet Theorem 3.27
- Proposition 3.31
- Theorem 3.34
- \bullet Lemma 4.2
- Proposition 4.4, Theorem 4.5
- Theorem 4.7, Theorem 4.9
- Proposition 4.19, Lemma 4.22, Proposition 4.23
- \bullet Theorem 4.32
- Proposition 4.40, Proposition 4.41, Proposition 4.44
- \bullet Theorem 4.45
- \bullet Theorem 4.49
- \bullet Definition 7.1
- \bullet Theorem 7.5
- Example 7.19 (change of basis formula)
 - See lecture notes from 7-7 to see the theorem version of the change of basis formula