
MATH 4242, Section 001 Final Exam Review Problems Summer 2020

1. Consider the following graph.

Use the Euler characteristic formula to calculate the dimension of the cokernel of the
incidence matrix. Can you identify the independent circuits on the graph visually?

Solution. First, the dimension of the cokernel is the number of independent circuits in the
We know that by the Euler characteristic formula

dim coker(A) = 1− number of vertices + number of edges = 1− 4 + 6 = 3.

Visually, the three independent circuits are the equalateral triangle in the bottom left, and
the two longer triangles down the middle.

2. Consider the graph from problem 1 but with one edge attached to it. (It looks like a
kite!)

Suppose we are studying Markov process associated to a random walk on this graph.

(a) Write down the transition matrix for this problem. The transition matrix is regular,
but which power of the transition matrix has all nonzero entries?

(b) What is the probability that a random walk on this graph will be at any given vertex?

(Hint: It may be annoying to work with a 5 × 5 matrix without a computer, but use your
knowledge of the situation to work around it! For example, you already know that λ = 1 is
an eigenvalue since it is regular. So all you have to do is find the eigenvectors V1. Don’t
worry I won’t ask you to row reduce a 5 × 5 on the exam. n = 3 at most. This is just
practice.)

Solution. (a) Labeling the vertices as 1-5 from top left to bottom right, the translation
matrix is

T =


0 1/3 0 1/4 1/3

1/3 0 0 1/4 1/3
0 0 0 1/4 0

1/3 1/3 1 0 1/3
1/3 1/3 0 1/4 0

 .

Since you can get to every other vertex from any starting vertex after 3 steps, then T 3 has
no nonzero entries. (T 2 doesn’t work because you can’t get from vertex 3 to vertex 4 in two
steps.)

(b) We know that this matrix is regular so it has λ = 1 as a nonrepeating eigenvalue, so we
can find the probability eigenvector in kerT − I. This kernel is generated by v = (3, 3, 1, 4, 3),
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which we can calculate by row reduction, so the corresponding probability vector is

u∗ =
1

14


3
3
1
4
3

 .

This represents the probability of the random walk being in each vertex.

3. Consider the system Ax = b where

A =

 0 1
−3 1
2 2

 b =

−1
0
0

.
(a) Find the least squares solution to this system.

(b) Which element w∗ ∈ img(A) actually is at minimum distance from b?

Solution. (a) The least squares solution is

x∗ = (ATA)−1AT b =
1

77

(
6 −1
−1 13

)(
0
−1

)
=

1

77

(
1
−13

)
.

(b) The actual closest point from the image of A to B is

w∗ = Ax∗ =
1

77

−13
−16
−24

 .

4. Consider the matrix

A =
1

3

 1 1 −1
−1 2 0
−1 2 0

 .

(a) Without even doing any calculation, you should be able to look at this matrix and know
one of the eigenvalues. What is that eigenvalue and why?

(b) Calculate ‖A‖∞. Does it imply that Ak → 0?

(c) Show properly that Ak → 0 as k →∞.

Solution. (a) This matrix has two rows which are exactly the same. Therefore the rows are
dependent. Therefore the rank of AT is less than 3, which means the rank of A is less than
3. The main theorem for invertible matrices tells us that therefore the kerA 6= 0. Thus
λ = 0 is eigenvalue.

(b) The L∞ norm of A is the greatest absolute row sum. Adding the absolute values of the
row entries gives that ‖A‖∞ = 1. This does not imply that Ak → 0 since ‖A‖∞ ≥ 1 and not
< 1.
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(c) To show that Ak → 0, we need to show that all the eigenvalues have |λi| < 1. The
characteristic polynomial is

−λ3 + λ2 − 2

9
λ = 0

so that the eigenvalues are λ = 0, 1/3, 2/3. All of these have absolute value less than 1, so
the theorem tells us that Ak → 0.

5. Diagonalize the matrix

A =

1 2 2
0 −2 −3
0 1 2

 .

Solution. To diagonalize a matrix, we just need the eigenvalues and a basis of eigenvectors.
The eigenvalues are λ = −1, 1, 1 with eigenvectors v1 = (2,−3, 1), v2 = (0,−1, 1), and
v3 = (1, 0, 0). Putting these into the columns of a matrix, we get the change of basis
transformation

S =

 2 0 1
−3 −1 0
1 1 0


and

Λ =

−1 0 0
0 1 0
0 0 1

 .

So the diagonalization is A = SΛS−1.

6. Find the Schur decomposition of the matrix

B =

(
−2 1
4 −2

)
.

What about its Jordan decomposition?

Solution. To find the Schur decomposition, we pick an eigenvector of B, and then make
it into an orthonormal basis. We see that the eigenvalues of B are λ = 0,−4. Let’s pick
λ = 0, which has eigenvector v = (1, 2). The corresponding unit vector is u = 1√

5
(1, 2). We

can complete this into an orthonormal basis by u2 = 1√
5
(−2, 1). Then putting u, u2, into the

columns of a matrix U , we can diagonalize the first column of B, we get that

UTBU =
1

5

(
1 2
−2 1

)(
−2 1
4 −2

)(
1 −2
2 1

)
=

(
0 −3
0 −4

)
= ∆.

Now we are done since ∆ is an upper triangular matrix with the eigenvalues on the diagonal
and U is orthogonal (or unitary but with real numbers), so

B = U∆UT .
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For the Jordan decomposition, this matrix is already diagonalizable, so the Jordan form is
just the diagonal matrix. The two eigenvectors are v = (1, 2) and v = (−1, 2). Therefore the
Jordan decomposition (aka diagonalization in this case) is

B =

(
1 −1
2 2

)(
0 0
0 −4

)(
1 −1
2 2

)−1
.

7. Find the Jordan decomposition of the matrix

C =

2 −1 0
9 −4 −3
0 0 −1

 .

Solution. Finding the eigenvalues, we get that we have a triple eigenvalue λ = −1. But the
only eigenvector is v = (1, 3, 0). So we need to generalized eigenvectors to complete the
Jordan chain v, w1, w2. First, we can find w1 by solving

(C − (−1)I)w1 = v.

Solving this system gives a solution

w1 =
y

3

1
3
0

+

1/3
0
0

 .

We don’t want vectors already in the kernel, so we pick w1 = (1/3, 0, 0). Now w2 completes
the chain, so we solve (C − (−1)I)w2 = w1, which gives us

w2 =
y

3

1
3
0

+

1/9
0

1/3

 .

So we can pick w2 = (1/9, 0, 1/3). Therefore the Jordan decomposition is C = SJS−1 where

S =

1 1/3 1/9
3 0 0
0 0 1/3


and

J =

−1 1 0
0 −1 1
0 0 −1

 .

8. Compute the spectral decomposition of the matrix

D =

1 0 3
0 −1 0
3 0 1

 .

What about the QR decomposition?
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Solution. This is a symmetric matrix, so we can make an orthonormal basis of eigenvectors.
This is the spectral decomposition. Find the eigenvectors normally, we get that λ = −1,−2, 4
with eigenvectors v1 = (0, 1, 0), v2 = (1, 0,−1), v3 = (1, 0, 1). Making these unit vectors we
get that the orthogonal change of basis matrix is

Q =

0 1√
2

1√
2

1 0 0
0 − 1√

2
1√
2


and

Λ =

−1 0 0
0 −2 0
0 0 4

 .

The spectral decomposition is D = QΛQT .

The QR decomposition is different. To calculate it, you do alternate G-S on the columns of D,
so the resulting orthonormal basis forms Q and the coefficients from G-S make R. Remember
that alternate G-S relies on the recursive process. Let w1 = (1, 0, 3), w2 = (0,−1, 0), and
w3 = (3, 0, 1). The basis of unit vectors we will get at the end is u1, u2, u3. First, w1 = r11w1,
so that r11 = ‖w1‖ =

√
10 and u1 = 1√

10
(1, 0, 3).

Then w2 = r12u1 + r22u2. We know that r12 = w2 · u1 = 0 and therefore u2 = w2 since w2 is
already a unit vector orthogonal to u1. We saw that r12 = 0 and r22 = 1.

Now onto w3 = r13u1 + r23u2 + r33u3. First r13 = w3 · u1 = 6√
10

, and r23 = w3 · u2 = 0.

Finally

r33 =

√
‖w3‖2 − r213 − r223 =

√
10− 36/10 =

√
64/10 =

8√
10
.

Finally

u3 =
w3 − r13u1 − r23u2

r33
=

1√
10

 3
0
−1

 .

Therefore the QR decomposition is

D =


1√
10

0 3√
10

0 −1 0
3√
10

0 − 1√
10



√

10 0 6√
10

0 1 0
0 0 8√

10

 .

9. Let B be a positive definite symmetric matrix. Suppose B2 has spectral decomposition

B2 = QΛQT .

Find a spectral decomposition of B in terms of Q and Λ.

Solution. Let Λ have diagonal entries λi, i.e. the eigenvalues of B2. Let µi be the eigenvalues
of B. Since B is positive definite then it has all positive eigenvalues, so µi > 0. But
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the eigenvalues of B2 are the eigenvalues of B, but squared, so µ2i = λi with the same
eigenvectors. So the change of basis matrix Q is still the same, but the matrix of eigenvalues
is the positive square root of what it used to be, µi = +

√
λi. We can denote the diagonal

matrix with the mui as
√

Λ. Therefore

B = Q
√

ΛQT .

10. Suppose A is a square matrix with two different diagonalizations

SΛS−1 = A = TΛ′T−1.

Do Λ and Λ′ have to be equal matrices? If not, what do they have in common? What about
S and T?

Solution. Neither the diagonal entries nor the change of basis matrices need be the same.
While the eigenvalues have to be the same, we can rearrange the order of them. So Λ and Λ′

are the same, but the eigenvalues can be in a different order. If we rearrange the eigenvalues,
then we also need to rearrange the eigenvectors, so S and T could have their columns
permuted. We can also change S by scaling any eigenvector, or in general changing the basis
of eigenvectors for any eigenspace Vλ. Therefore S and T definitely can be different.

Try finding two different diagonalizations of the matrix from Problem 5.

11. Consider the linear iterative system u(0) = (1, 0, 1), and u(k+1) = Tu(k) where

T =
1

6

 4 1 −1
−1 2 1
0 −9 3

 .

(a) Find all the fixed points of T .

(b) Compute the limit of u(k) as k →∞.

Solution. (a) All the fixed points are all the eigenvectors for the eigenvalues λ = 1, i.e.
kerT − I. Using row reduction, the kernel of T − I is actually trivial, so λ = 1 is not an
eigenvalue and the only fixed point is u = 0.

(b) But from part we computed the eigenvalues to be λ = 1/2, 1/2 ± i/2. Notice that
|(1/2 + i/2)| =

√
1/4 + 1/4 =

√
2/2 < 1, so that all eigenvalues have absolute value < 1.

Therefore T k → 0 as k →∞. Equivalently, every linear iterative system converges to 0 as
well, so u(k) → 0 as k →∞ no matter what u(0) is.
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