MATH 4242 Final Exam Study Guide

New Topics	
• Graph	(2.6)
• Digraph, directed graph	(2.6)
• Connected Graph	(2.6)
• Path	(2.6)
• Circuit	(2.6)
• Independent circuit	(2.6)
• Incidence Matrix	(2.6)
• Euler characteristic	(2.6, lecture notes)
• Minimization of quadratics	(5.2)
• Closest point in a subspace	(5.3)
• Least squares solution	(5.4)
• Least squares linear and polynomial data fitting	(5.5)
• Hom Vector space	(7.1)
• Dual Space	(7.1)
• Linear Operators	(7.1)
• Principle of Superposition	(7.4)
• Solving differntial equation with linear operators	(7.4)
• Eigenvalue, eigenvector	(8.2)
• Characteristic polynomial	(8.2)
• Eigenspace	(8.2)
• Algebraic multiplicity	(8.2, lecture notes)
• Eigenvector basis	(8.3)
• Complete Eigenvalue	(8.3)
• Diagonalizable, Diagonalization	(8.3)
• Invariant subspaces	(8.4)
• Spectral decomposition	(8.5)
• Incomplete matrix	(8.6)
• Unitary matrix	(8.6)
• Schur decomposition	(8.6)
• Jordan chain	(8.6)
• Generalized eigenvector	(8.6)

• Jordan block matrix	(8.6)
• Jordan decomposition	(8.6)
• Singular values	(8.7)
• Singular value decomposition	(8.7)
• Pseudoinverse	(8.7)
• Linear iterative system	(9.1)
• Globally asymptotically stable	(9.2)
• Convergent matrix	(9.2)
• Spectral Radius	(9.2)
• Fixed points	(9.2)
• Stable fixed point	(9.2)
• Finding fixed points	(9.2)
• Calculating limited behavior of iterative system	(9.2)
• L^{∞} norm and spectral radius	(9.2)
• Markov Process	(9.3)
• Translation matrix	(9.3)
• Regular translation matrix	(9.3)
• Probability Vector	(9.3)
• Unique probability eigenvector of regular translation matrix	(9.3)
Theorems	
• Proposition 2.51	(2.6)
• Theorem 2.53	(2.6)
• Theorem 2.54	(2.6)
• Theorem 5.2	(5.2)
• Theorem 5.5	(5.3)
• Theorem 5.7	(5.3)
• Theorem 5.11	(5.4)
• Theorem 7.5	(7.1)
• Theorem 7.10	(7.1)
• Theorem 7.30	(7.4)
• Theorem 7.38	(7.4)
• Theorem 7.43	(7.4)
• Theorem 8.3	(8.2)
• Proposition 8.10	(8.2)

• Proposition 8.12	(8.2)
• Proposition 8.13	(8.2)
• Theorem 8.21	(8.3)
• Theorem 8.30	(8.4)
• Theorem 8.32	(8.5)
• Theorem 8.35	(8.5)
• Theorem 8.38	(8.5)
• Theorem 8.45	(8.6)
• Theorem 8.57	(8.6)
• Theorem 8.63	(8.6)
• Lemma 8.68	(8.6)
• Theorem 9.4	(9.1)
• Theorem 9.11	(9.2)
• Theorem 9.12, Theorem 9.14	(9.2)
• Proposition 9.17	(9.2)
• Proposition 9.22	(9.2)
• Theorem 9.30	(9.3)

Exam 1 Topics

- $m \times n$ matrix
- ij^{th} entry in a matrix A, a_{ij}
- row vector vs. column vector
- ullet zero matrix
- \bullet identity matrix
- diagonal matrix
- \bullet elementary matrix
- upper/lower triangular matrix
- \bullet regular matrix
- \bullet LU decomposition
- $\bullet\,$ nonsingular matrix
- \bullet permutation matrix
- ullet permuted LU decomposition
- \bullet matrix inverse
- matrix transpose
- \bullet Theorem 1.18

- $\bullet\,$ Lemma 1.19 Lemma 1.21
- Theorem 1.28
- \bullet *LDV* decomposition
- Lemma 1.32
- symmetric matrix
- \bullet Theorem 1.34
- \bullet row-echelon form
- pivots
- \bullet matrix rank
- basic variables, free variables
- \bullet Theorem 1.45
- determinant of a matrix
- \bullet Theorem 1.50
- Lemma 1.51
- Theorem 1.52
- vector spaces
- \mathbb{R}^n , polynomials, $C^0(\mathbb{R})$
- \bullet subspaces
- linear combination
- span
- linearly independent
- linearly dependent
- Theoerem 2.21
- rank of a matrix
- basis
- \bullet Theorem 2.29
- \bullet Theorem 2.31
- Lemma 2.34
- \bullet kernel
- image
- superposition principle
- Proposition 2.41

Exam 2 Topics

•	
• inner product on a real vector space	(3.1)
• dot product on \mathbb{R}^n	(3.1)
• weighted dot product \mathbb{R}^n	(3.1)
• inner product on function vector spaces	(3.1)
• norm from an inner product	(3.1)
• Cauchy-Schwartz inequality	(3.2)
• Triangle inequality	(3.2)
• orthogonal vectors	(3.2, 4.1)
• angle between two vectors	(3.2)
• norm in general	(3.1, 3.3)
• L^1, L^2, L^∞ norms on \mathbb{R}^n and $C^0[a, b]$	(3.3)
• unit vectors	(3.3)
• unit spheres	(3.3)
• equivalence of norms	(3.3)
- just the statement of Thm 3.17, nothing beyond that	
• matrix L^{∞} norm	(3.3)
\bullet positive definite matrix, positive semi-definite matrix	(3.4)
• quadratic form $x^T K x$	(3.4)
• Gram matrix	(3.4)
• complex number	(3.6)
• complex conjugate	(3.6)
• complex inner product space	(3.6)
 orthogonal and orthonormal bases 	(4.1)
• Gram-Schmidt	(4.2)
• alternate Gram-Schmidt	(4.2)
• orthogonal matrix	(4.3)
• QR factorization	(4.3)
• vector orthogonal to a subspace	(4.4)
• orthogonal projection	(4.4)
• orthogonal subspaces	(4.4)
\bullet orthogonal complement W^\perp	(4.4)
• cokernel, coimage of a matrix	(2.5)
• linear function $T: V \to W$	(7.1)
• change of basis formula	(7.2)

- \bullet Cauchy-Schwarz Inequality, Thm 3.5
- \bullet Triangle Inequality, Thm 3.9
- \bullet Theorem 3.17
- Theorem 3.20
- $\bullet~$ Def 3.23, Theorem 3.24
- \bullet Theorem 3.27
- Proposition 3.31
- \bullet Theorem 3.34
- $\bullet \ \, \text{Lemma 4.2}$
- Proposition 4.4, Theorem 4.5
- Theorem 4.7, Theorem 4.9
- Proposition 4.19, Lemma 4.22, Proposition 4.23
- \bullet Theorem 4.32
- Proposition 4.40, Proposition 4.41, Proposition 4.44
- \bullet Theorem 4.45
- \bullet Theorem 4.49
- Definition 7.1
- Theorem 7.5
- Example 7.19 (change of basis formula)
 - See lecture notes from 7-7 to see the theorem version of the change of basis formula