Textbook: 8.4.2ac, 8.5.1ad, 8.5.14ad, 8.5.31ac, 8.6.1ab, 8.6.7acf, 8.2.23, 8.6.17

Note: Not a typo, 8.6.17 relies on 8.2.23. It might be good to do them together!

Hint for 8.6.17: Consider

$$
A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

Hint for 8.6.7f: There's a difficulty in this problem, which was not addressed in lecture. This matrix has 2 eigenvectors $v_1 = (0, 1, 1, 0)$ and $v_2 = (1, 0, 0, 0)$, so you need to make a Jordan chain with v_3, v_4 . Trying to make a chain off of $(0, 1, 1, 0)$ immediately yields not results. So you might turn towards $v_2 = (1, 0, 0, 0)$. This does work but not as easily as you might expect.

Here's why. When creating a Jordan chain of length 3 or bigger, you need some generalized eigenvectors w_1, w_2, w_3 such that

$$
(A - \lambda I)w_1 = 0 \quad (A - \lambda I)w_2 = w_1 \quad (A - \lambda I)w_3 = w_2.
$$

Notice the properties of w_2 . Since $(A - \lambda I)w_3 = w_2$, then $w_2 \in \text{img}(A - \lambda I)$ AND $(A - \lambda I)w_2 = w_1$. Most of the time there is an obvious choice for w_2 . But sometimes there is not. In general you have to find all solutions to $(A - \lambda I)x = w_1$ that also intersect that with $img(A - \lambda I)$ to make sure that $x = w_2$ works. If $v_2 = (1, 0, 0, 0)$, the row reducing the equation

$$
(A-2I)v_3 = (1,0,0,0)
$$

looks like

$$
v_3 = x \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \end{pmatrix}.
$$

And you might say, "Oh I can pick $v_3 = (0, -1, 0, 0)$!" but it turns out that $(0, -1, 0, 0) \notin \text{img}(A - 2I)$ so there can be no v_4 . You need to find x, z such that

$$
x\begin{pmatrix}1\\0\\0\\0\end{pmatrix} + z\begin{pmatrix}0\\1\\1\\0\end{pmatrix} + \begin{pmatrix}0\\-1\\0\\0\end{pmatrix} \in \text{img}(A-2I)
$$

so that you can find v_4 . This isn't super hard but kind of a pain in the butt. In this case you can find that $x = -1$ and $z = 1/2$ so that

$$
v_3 = \frac{-1}{2} \begin{pmatrix} 2 \\ 1 \\ -1 \\ 0 \end{pmatrix}
$$

is the correct choice for v_3 . I'll let you find v_4 .

Solution (8.6.7c). This is an upper triangular matrix, so the eigenvalues are $\lambda = 1$ three times. But if we compute the eigenspace

$$
ker (A - 1I) = ker \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}
$$

we find that $V_1 = \text{span}(1, 0, 0)$. Therefore we need a Jordan chain of length 3 to make enough generalized eigenvectors. Call this chain v_1, v_2, v_3 , where $v_1 = (1, 0, 0)$.

To find v_2 , we solve $(A - 1I)v_2 = (1, 0, 0)$. Doing row reduction reveals that $v_2 = x(1, 0, 0) + (0, 1, 0)$, so we can choose that $v_2 = (0, 1, 0)$. To find v_3 , we can solve $(A - 1I)v_3 = (0, 1, 0)$, so that $v_3 = (0, -1, 1)$. Therefore the Jordan form is

$$
J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}
$$

and the change of basis matrix is

$$
S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.
$$

Solution (8.2.23). We show that AB and BA have the same eigenvalues. There are 2 big cases; when $\lambda = 0$ and when $\lambda \neq 0$. We'll do $\lambda \neq 0$ first.

Let λ be an eigenvalue for AB, so that $v \neq 0$ and $ABv = \lambda v$. Assume that $\lambda \neq 0$. Then consider the vector Bv. Note that $Bv \neq 0$, since if $Bv = 0$, then $ABv = 0 \neq \lambda v$. Now we show that Bv is an eigenvector for BA with eigenvalue λ !

$$
(BA)(Bv) = B(ABv) = B(\lambda v) = \lambda (Bv).
$$

One can make the reverse argument to show that an eigenvalue $\mu \neq 0$ of BA must be an eigenvalue for AB with eigenvector Av . Therefore AB and BA have the same nonzero eigenvalues.

Now we just have to show that if one of AB or BA has an eigenvector $\lambda = 0$, so does the other. Assume that AB has eigenvalue $\lambda = 0$, i.e. the exists a $v \neq 0$ such that $ABv = 0$. We can make almost a similar argument, except that $Bv = 0$ is possible now. But if $Bv \neq 0$, then $BA(Bv) = (BA)(Bv) = 0$ so that Bv is an eigenvector with eigenvalue 0. But what happens if $Bv = 0$. Then it can't be an eigenvector. So, in that case there are 2 options.

Either A^{-1} exists or it doesn't. If it doesn't, then ker $A \neq 0$, so that $0 \neq w \in \text{ker } A$ and w is an eigenvector for BA with eigenvalue $\lambda = 0$. In that case we are done; 0 is an eigenvalue of both AB and BA.

If A^{-1} does exist and $Bv = 0$, then $BAw = 0$ can be solved by $w = A^{-1}v \neq 0$. In this case

$$
BAw = BA(A^{-1}v) = B(AA^{-1})v = Bv = 0.
$$

Then $\lambda = 0$ is also an eigenvalue for BA, with eigenvector $A^{-1}v$. In this case $\lambda = 0$ is an eigenvector for AB and BA and we are done.

Solution (8.6.17). We can show that AB and BA , while they have the same eigenvalues, do NOT have the same Jordan forms.

As a counterexample, let

$$
A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

Then $AB = 0$, the zero matrix. And $BA = A$ it turns out. But the zero matrix has a triple eigenvalues $\lambda = 0$ with enough eigenvector dim $V_0 = \dim \ker AB = 3$. But since $BA = A$, we can find the Jordan form of A. This matrix A has triple eigenvalues $\lambda = 0$, but the eigenspace V_0 has dimension 2. Therefore they have different Jordan forms, since one has enough eigenvectors, while the other does not.