MATH 4242, Section 001 Homework 4 Summer 2020

Textbook: 2.4.21, 2.5.38, 2.5.39, 3.1.2abed, 3.1.12, 3.1.21ab, 3.1.23abd, 3.1.26

Solution (2.4.21). Let {v1,...,v,} be a basis of R” and A an n x n nonsingular matrix. We show that
{Avy,..., Av,} is also a basis of R™. For future reference, let P = (v; ... wvy,) be the n X n matrix with
columns v;. It is nonsingular since the v; form a basis.

Since our potential basis has n vectors, and dim(R") = n, by Theorem 2.31d, it suffices to show that
{Awvy,..., Av,} is an independent set. Consider a linear combination
c1Avy + -+ + ¢ Av, = 0.

Expanding this linear combination as vectors in R™, we get that

C1 0
(Av1 Avn) | =

Cn 0
But by the column formula for matrix multiplication, this is the linear system
APc=0

where ¢ = (c1,...,¢,)T. Since both A and P are nonsingular, then AP is nonsingular and invertible. Thus
there is a unique solution to this linear system, namely ¢ = 0. Therefore the coefficients of the linear
combination above were zero to begin with so {Avy, ..., Av,} is independent, and by Theorem 2.31d, it is
a basis.

Solution (2.5.38). Let A € My, xn(R) and B € My, (R). Then we show that ker A C ker BA.

It suffices to show that if v € ker A, then v € ker BA also. Writing out the defintions, we know that Av = 0.
But then
BAv = B0 =0.

This equation means that v € ker BA and the proof is complete.
Solution (2.5.39). Let A € My, xn(R) and B € M,,«,(R). Then we show that img AB C img A.

First we claim that img AB C {v = Aw | w € img B}, namely that all vectors v in the image of AB are of
the form Aw, where w is in the image of B. In particular, since v € img AB, then v = ABu, where u € RP.
If we let Bu = w, then v = Aw. Furthermore w € img B since w = Bu. Then we have shown the first step,
that

img AB C {v = Aw | w € img B}.

(In fact, these sets are equal, but we won’t need equality.) Now, we know that img A = {v = Aw | w € R"},
which is the above set without the condition that w € img B. Therefore {v = Aw | w € img B} C img A.
Stringing these inequalities together, we see that

img AB C {v=Aw | w € img B} Cimg A

as desired.

Solution (3.1.2). (a) It is an inner product (b) Not an inner product since it is not positive, ((1,0), (1,0)) =0
even though (1,0) # (0,0). (c) Similarly is not positive, since ((1,—1),(1,—1)) =0-0=0. (d) Not an inner
product since it is not bilinear

Solution (3.1.12). This can be solved by expanding out the right side and using bilinearity and symmetry.
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lz+yllP —llz —ylP = +y,z+y) — (& —y,z —y)
= (z,2) +2(z,y) + (4, )
—(z,z) + 2(z,y) — (v, 9)
= 4(z,y).

Solution (3.1.23). (a) It is an inner product. I'll prove positivity since that is the hardest part. Note that
w(z) =e™* >0 on [~1,1] and for any f, we have that f(z)? > 0. Therefore

1
(fL )= /_lf(:n)%"” dz > 0.

But > is not good enough. We have to show that (f, f) > 0 if f # 0, which is a little harder. If f(z) # 0,
then since it is continuous, there is an interval I = (a,b) C [~1,1] such that f(x)? > 0 on I. Otherwise f
would just be the zero function or not continuous.

(For those of you with analysis background, since f(x) # 0, there exists an xg such that f(xg) # 0. Let
e = f(xp). Since f is continuous, there exists a ¢ such that |f(z) — f(zo)| < f(xo) on (zg — d,20 + ). In
particular, f(z) # 0 in a neighborhood of zg. Then let I = (29 — 6,29 + ) and f(x)? > 0 on that open
interval.)

Anyway, we know that f(z)% > 0 (strict inequality is the key here!) on some smaller interval I = [a,b] and
consequentially f(z)2e~% > 0 on the smaller interval also. Then if f # 0, we have that

(£, f) = /11 fx)?e " dz > /bf(:c)Zex dz > 0.

Therefore this pairing is positive. (b) It is not an inner product since it is not positive. Let f(z) = x, then
(f, )= f_ll x3dr = 0. (d) It is an inner product. Proof of positivity is the same as before, you just have to
be a little bit careful since 22 = 0 when x = 0 so you can’t show that f(x)?22 > 0 like before. You have to
make sure that your interval doesn’t contain 0, but you can still do that since you can pick a subinterval of
[a,b]\{0}. Then on this even smaller inteval, which you can just rename back to [a, b], you know that

1 b
/ f(a)a? de > / F(o)a? de > 0.
1 a

Just because 2 = 0 exactly at = 0, one single point won’t affect the integral, it’ll still be strictly positive.

Solution (3.1.26). Not true. A counterexample is f(z) = z on [a,b] = [0,1]. Then

But



