Textbook: 2.4.21, 2.5.38, 2.5.39, 3.1.2abcd, 3.1.12, 3.1.21ab, 3.1.23abd, 3.1.26

Solution (2.4.21). Let $\{v_1, \ldots, v_n\}$ be a basis of \mathbb{R}^n and A an $n \times n$ nonsingular matrix. We show that $\{Av_1, \ldots, Av_n\}$ is also a basis of \mathbb{R}^n . For future reference, let $P = (v_1 \ldots v_n)$ be the $n \times n$ matrix with columns v_i . It is nonsingular since the v_i form a basis.

Since our potential basis has n vectors, and $\dim(\mathbb{R}^n) = n$, by Theorem 2.31d, it suffices to show that $\{Av_1, \ldots, Av_n\}$ is an independent set. Consider a linear combination

$$c_1Av_1 + \dots + c_nAv_n = 0.$$

Expanding this linear combination as vectors in \mathbb{R}^n , we get that

$$(Av_1 \quad \dots \quad Av_n) \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

But by the column formula for matrix multiplication, this is the linear system

$$APc = 0$$

where $c = (c_1, \ldots, c_n)^T$. Since both A and P are nonsingular, then AP is nonsingular and invertible. Thus there is a unique solution to this linear system, namely c = 0. Therefore the coefficients of the linear combination above were zero to begin with so $\{Av_1, \ldots, Av_n\}$ is independent, and by Theorem 2.31d, it is a basis.

Solution (2.5.38). Let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $B \in \mathcal{M}_{p \times m}(\mathbb{R})$. Then we show that ker $A \subseteq \ker BA$.

It suffices to show that if $v \in \ker A$, then $v \in \ker BA$ also. Writing out the definitions, we know that Av = 0. But then

$$BAv = B0 = 0.$$

This equation means that $v \in \ker BA$ and the proof is complete.

Solution (2.5.39). Let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $B \in \mathcal{M}_{n \times p}(\mathbb{R})$. Then we show that img $AB \subseteq \operatorname{img} A$.

First we claim that $\operatorname{img} AB \subseteq \{v = Aw \mid w \in \operatorname{img} B\}$, namely that all vectors v in the image of AB are of the form Aw, where w is in the image of B. In particular, since $v \in \operatorname{img} AB$, then v = ABu, where $u \in \mathbb{R}^p$. If we let Bu = w, then v = Aw. Furthermore $w \in \operatorname{img} B$ since w = Bu. Then we have shown the first step, that

$$\operatorname{img} AB \subseteq \{ v = Aw \mid w \in \operatorname{img} B \}.$$

(In fact, these sets are equal, but we won't need equality.) Now, we know that $\operatorname{img} A = \{v = Aw \mid w \in \mathbb{R}^n\}$, which is the above set without the condition that $w \in \operatorname{img} B$. Therefore $\{v = Aw \mid w \in \operatorname{img} B\} \subseteq \operatorname{img} A$. Stringing these inequalities together, we see that

$$\operatorname{img} AB \subseteq \{v = Aw \mid w \in \operatorname{img} B\} \subseteq \operatorname{img} A$$

as desired.

Solution (3.1.2). (a) It is an inner product (b) Not an inner product since it is not positive, $\langle (1,0), (1,0) \rangle = 0$ even though $(1,0) \neq (0,0)$. (c) Similarly is not positive, since $\langle (1,-1), (1,-1) \rangle = 0 \cdot 0 = 0$. (d) Not an inner product since it is not bilinear

Solution (3.1.12). This can be solved by expanding out the right side and using bilinearity and symmetry.

$$\begin{split} ||x+y||^2 - ||x-y||^2 &= \langle x+y, x+y \rangle - \langle x-y, x-y \rangle \\ &= \langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle \\ &- \langle x, x \rangle + 2 \langle x, y \rangle - \langle y, y \rangle \\ &= 4 \langle x, y \rangle. \end{split}$$

Solution (3.1.23). (a) It is an inner product. I'll prove positivity since that is the hardest part. Note that $w(x) = e^{-x} > 0$ on [-1, 1] and for any f, we have that $f(x)^2 \ge 0$. Therefore

$$\langle f,f\rangle = \int_{-1}^1 f(x)^2 e^{-x}\,dx \ge 0.$$

But \geq is not good enough. We have to show that $\langle f, f \rangle > 0$ if $f \neq 0$, which is a little harder. If $f(x) \neq 0$, then since it is continuous, there is an interval $I = (a, b) \subseteq [-1, 1]$ such that $f(x)^2 > 0$ on I. Otherwise f would just be the zero function or not continuous.

(For those of you with analysis background, since $f(x) \neq 0$, there exists an x_0 such that $f(x_0) \neq 0$. Let $\epsilon = f(x_0)$. Since f is continuous, there exists a δ such that $|f(x) - f(x_0)| < f(x_0)$ on $(x_0 - \delta, x_0 + \delta)$. In particular, $f(x) \neq 0$ in a neighborhood of x_0 . Then let $I = (x_0 - \delta, x_0 + \delta)$ and $f(x)^2 > 0$ on that open interval.)

Anyway, we know that $f(x)^2 > 0$ (strict inequality is the key here!) on some smaller interval I = [a, b] and consequentially $f(x)^2 e^{-x} > 0$ on the smaller interval also. Then if $f \neq 0$, we have that

$$\langle f, f \rangle = \int_{-1}^{1} f(x)^2 e^{-x} \, dx \ge \int_{a}^{b} f(x)^2 e^{-x} \, dx > 0.$$

Therefore this pairing is positive. (b) It is not an inner product since it is not positive. Let f(x) = x, then $\langle f, f \rangle = \int_{-1}^{1} x^3 dx = 0$. (d) It is an inner product. Proof of positivity is the same as before, you just have to be a little bit careful since $x^2 = 0$ when x = 0 so you can't show that $f(x)^2 x^2 > 0$ like before. You have to make sure that your interval doesn't contain 0, but you can still do that since you can pick a subinterval of $[a, b] \setminus \{0\}$. Then on this even smaller interval, which you can just rename back to [a, b], you know that

$$\int_{-1}^{1} f(x)^2 x^2 \, dx \ge \int_{a}^{b} f(x)^2 x^2 \, dx > 0$$

Just because $x^2 = 0$ exactly at x = 0, one single point won't affect the integral, it'll still be strictly positive. Solution (3.1.26). Not true. A counterexample is f(x) = x on [a, b] = [0, 1]. Then

$$||x||^{2} = \int_{0}^{1} x^{2} \, dx = \frac{1}{3}.$$

But

$$|x^2|| = \sqrt{\int_0^1 x^4 \, dx} = \sqrt{\frac{1}{5}} \neq \frac{1}{3}.$$