
MATH 4242, Section 001 Homework 5 Summer 2020

Textbook: 3.2.2a, 3.2.10, 3.2.12ab, 3.2.16, 3.2.18, 3.2.25, 3.2.40, 3.3.10abcd, 3.3.20,abcd, 3.3.28abc, 3.3.35
(only part i), 3.3.39, 3.3.45ab, 3.3.47

Solution (3.2.10). (a) It is not an inner product because it is not symmetric nor is it positive. But it is
bilinear.

(b) We can use the relation sin2(θ) = 1− cos2(θ) to solve this problem. First note that

(v × w)2 = ||v||2||w||2 − 〈v, w〉2

by expanding both sides in coordinates. But then using the definition of cos,

(v × w)2 = ||v||2||w||2 − ||v||2||w||2 cos2(θ) = ||v||2||w||2 sin2(θ).

Taking the square root of both sides we see that ||v||||w|| sin(θ) = ±(v × w). But is v × w positive or
negative? We have to narrow it down to either + or −. Turns out to be the +. To prove this, it suffices to
show that (v × w) ≥ 0 when θ ∈ [0, π], which is the domain of cos.

Fix ||v|| and ||w|| and vary θ. Since sin(θ) = 0 only when v and w are parellel, i.e. when θ = 0, π, it suffices
to show that v × w > 0 for any one θ ∈ (0, π) by the intermediate value theorem. We let θ = π/2. Then
v = (v1, v2) and

w =
||w||
||v||

(−v2, v1)

which is 90 degree from v. Then

v × w =
||w||
||v||

(v21 + v22) > 0

Thus we can take the positive root and

v × w = ||v||||w|| sin(θ).

(c) This follows from the formula. We know that sin(θ) = 0 if and only if θ = 0, π which is the case if and
only if v and w are parellel.

(d) Consider the following diagram.

‖v‖

‖w‖

‖v‖

‖w‖ ‖v‖ cos θ

‖v‖ sin θ‖v‖ sin θ

‖v‖ cos θ

θ

From here we can see that the area of the parallelogram is

A = (‖w‖+ ‖v‖ cos θ) ‖v‖ sin θ − 2

(
1

2
‖v‖ cos θ ‖v‖ sin θ

)
= ‖w‖ ‖v‖ sin θ = |v × w|

as desired. You can also see that A =

∣∣∣∣det

(
v1 w1

v2 w2

)∣∣∣∣ which is how you generalize this to Rn. You can only

take a cross product in R3, if you remember from multi.

Solution (3.2.16). This is a row reduction problem. The vectors orthogonal (1, 2, 3) and (−2, 0, 1) are exactly
the kernel of the matrix (

1 2 3
−2 0 1

)
.

Row reduction tells you that the kernel is the span of the vector (2,−7, 4).
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Solution (3.2.25). We can do one better. Let W ⊆ V be a subspace. Let W⊥ be the set of all vectors
orthogonal to all vectors of W . We can show that W⊥ is a subspace. We have to show it satisfies the
subspace axioms.

First W⊥ 6= ∅ since 0 ∈ W⊥. For all w ∈ W , we know that 〈0, w〉 = 0. The zero vector is orthogonal to
everything.

Second, let u, v ∈W⊥. We show that u+ v ∈W⊥ also. By bilinearity,

〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 = 0 + 0 = 0.

Therefore u+ v is orthogonal to all w ∈W as well.

Finally, 〈cv, w〉 = c〈v, w〉 = 0 as well. So W⊥ is a subspace. In particular, when W = span(v), then W⊥ is
all the vectors perpendicular to v, like the problem asks.

Solution (3.2.40). It’s true!

||w|| = || − v + (v + w)|| ≤ || − v||+ ||v + w|| = ||v||+ ||v + w||

Solution (3.3.10c). We show that ||v|| = 2|v1|+ |v2| is a norm on R2. First, it is positive by definition, since
absolute values are always positive. Second, it is homogeneous since

||cv|| = 2|cv1|+ |cv2| = |c|(2|v1|+ |v2|) = |c| · ||v||.

Finally the triangle inequality follows from the triangle inequality for the absolute value.

||v + w|| = 2|v1 + w1|+ |v2 + w2|
≤ 2(|v1|+ |w1|) + |v2|+ |w2|
= 2|v1|+ |v2|+ 2|w1|+ |w2|
= ||v||+ ||w||

Solution (3.3.35i). We have to show that

||v||2 ≤ ||v||1 ≤
√
n||v||2.

First, we know that by distributive property

||v||21 =

(
n∑

i=1

|vi|

)2

=
n∑

i=1

|vi|2 +
n∑

i 6=j

|vivj | ≥
n∑

i=1

|vi|2 = ||v||22.

Taking square roots, this proves the first inequality. For the next inequality, we can do a clever trick using
Cauchy-Schwartz.

||v||1 =
n∑

i=1

|vi| = (|v1|, . . . , |vn|) · (1, 1, . . . , 1)

≤ ||(|v1|, . . . , |vn|)|| · ||(1, . . . , 1)|| = ||v||2
√
n
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Another way to show this inequality is to find

c = min{||u||1 | ||u||2 = 1}

and
d = max{||u||1 | ||u||2 = 1}.

The minimum value of the L1 norm on the L2 unit sphere is achieved at u = (1, 0, . . . , 0), so that c = 1.
The maximum is achieved at u = (1/

√
n, . . . , 1/

√
n) so that d =

√
n. Therefore ||v||2 ≤ ||v||1 ≤

√
n||v||2.

Solution (3.3.39). Since ||f ||∞ is the maximum value of |f(x)| on the interval [a, b], then we know that
f(x)2 ≤ ||f ||2∞ on the interval as well. We can integrate both sides of this inequality and get

||f ||22 =

∫ b

a
f(x)2 dx ≤

∫ b

a
||f ||2∞ dx = (b− a)||f ||2∞.

Taking the square root of both sides shows that

||f ||2 ≤
√
b− a||f ||∞.

Solution. It’s false. I picked some random A and S matrices and it gave me a counterexample.

Let

A =

1 2 3
4 5 6
7 8 9

 S =

1 0 1
0 1 1
1 1 0

 B = S−1AS = 1
2

10 11 9
22 23 21
−2 −1 −3

.
Then ||A||∞ = 7 + 8 + 9 = 24 but ||B||∞ = (22 + 23 + 21)/2 = 33.
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