
MATH 4242, Section 001 Homework 7 Summer 2020

Textbook: 4.1.2ab, 4.1.15, 4.1.17, 4.1.27ac (feel free to use wolframalpha for these integrals if you want),
4.2.1a, 4.3.2a

Optional Challenge Problem: Let σ be a permutation of n objects with corresponding permutation
matrix Pσ. Let σ−1 be the reverse permutation to σ. Or if you know that σ is a bijection

σ : {1, . . . , n} → {1, . . . , n}

let σ−1 be the inverse bijection. Show that P Tσ = Pσ−1 . (Hint: Look at Exercise 4.3.15).

Solution (4.1.15). Let V be an inner product space. We show that ‖v‖2 + ‖w‖2 = ‖w + v‖2 iff v is
perpendicular to w. This is the Pythagorean theorem in a general inner product space since when v and w
are at a right angle, v, w, and v + w form a right triangle.

First, let the Pythagorean formula hold. Then

‖v‖2 + ‖w‖2 = ‖v +W‖2 = 〈v + w, v + w〉 = ‖v‖2 + ‖w‖2 + 2〈v, w〉.

By cancelling we see that 〈v, w〉 = 0, so they are orthogonal. Conversely, if 〈v, w〉 = 0, it is easy to see that
‖v + w‖2 = ‖v‖2 + ‖w‖2 by simplification.

Solution (4.1.17). Given nonzero mutually orthogonal vectors v1, . . . , vk, their Gram matrix is K ∈Mk×k(R)
such that (K)ij = 〈vi, vj〉. Since the vi are mutually orthogonal, then if i 6= j, (K)ij = 0, and on the
diagonal (K)ii = ‖vi‖2. Then K is a diagonal matrix with ‖vi‖2 on the diagonal. It is nonsingular since
vi 6= 0 so its diagonal are strictly positive, or nonzero at least. Therefore K has the full amount of pivots,
and it is nonsingular.

Solution (4.1.27a). Let P (3) be the vector space of polynomials with degree 3 or less as a subspace of
C0[−1, 1] with the usual inner product. This is four dimensional since 1, t, t2, and t3 form a basis. We show
that P0 = 1, P1 = t, P2 = t3 − 1/3, and P3 = t3 − 3t/5 form an orthongonal basis.

To show they form a basis in the first place, note that P2 + (1/3)(P0) = t2 and P3 + (3/5)(P1) = t3.
Therefore 1, t, t2, t3 ∈ span(P0, P1, P2, P3). Since all the elements of an already known basis are in the span
of the Pi, then the Pi span P (3). Since there are four of them and dim(P (3)) = 4, then they form a basis by
Theorem 2.31.

To show this is an orthogonal basis, we show that 〈Pi, Pj〉 = 0 for i 6= j. You can simplify these integrals
since most of these are integrals of an odd function on a symmetric interval. The inner products 〈P0, P2〉
and 〈P1, P3〉 cancel nicely though.
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Since these basis vectors are mutually orthogonal, then they form an orthogonal basis.

Solution (Optional Problem). Let σ ∈ Sn with inverse σ−1. Let Pσ be the corresponding permutation
matrix to σ. We form σ by permuting the rows of I according to the permutation σ. Therefore Pσ has
entries

(Pσ)ij =

{
1 if i = σ(j)

0 else

Therefore P Tσ has entries

(P Tσ )ij =

{
1 if j = σ(i)

0 else
=

{
1 if i = σ−1(j)

0 else
= (Pσ−1)ij .

Thus since P Tσ and Pσ−1 have the same entries, we see that P Tσ = Pσ−1 .

Note that the columns of Pσ form an orthonormal basis, as they are just a rearrangement of the standard
basis vectors by σ−1. Therefore Pσ is orthogonal, and P Tσ = P−1

σ . Thus we have shown that Pσ−1 = P−1
σ .
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