

Warning: 2.2.22c (hard problem), probably won't proh this
one to grade!

2 MW, 2+W Subspace)

7 MM a Subspace

7 MM = x axis My axis = \$(0,0)

$$\frac{7}{200}$$

$$\frac{7}$$

Exam 1:	10) 9	(b) (c)	equired	to have	camer	on that day
		② Z		au exam		exam)
			<i>5</i> 0	10 Uplea	s spire	
Post snay			ams latr	bday.	'س در	working
5/6 problems	(वृप	miks tugna	ય3 ૧	short proof .2.22 alb at M	G. D	

All bases of a vector space have the same Last time: If {v,...vn} and {w,...wm} are both bases of U abstract Kind of extra ordinary the n=m. Basis size is inhum to V! The dimension of U is the size of any basis of V. dim (v) = n Pf (Dustine) (1) Let $V = R^n = \left\{ \begin{pmatrix} a_1 \\ i \end{pmatrix} \right\}$. n=k. dim(12")=n Suppose {v,--. vk} 11 a basis. Claim: All bases of IR? , have size n. وري... و و.ع.

By
$$\{v_1, \dots, v_k\}$$
 are independent on $\{v_1, \dots, v_k\} = \{v_1, \dots, v_k\} = \{v_1,$

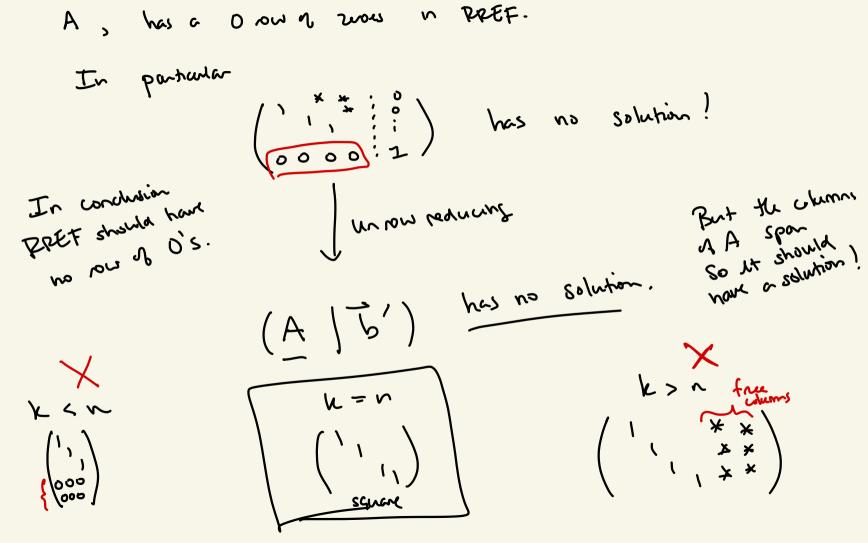
PREF who four variables
$$\Rightarrow$$
 all columns have leading $\Delta^{1}S$. \Rightarrow $k > n$ is folsow \Rightarrow $k \leq n$.

Span $(v_1 ... v_k) = \mathbb{R}^n \Rightarrow$ for all vectors to $(v_1 ... v_k) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = b$ always has at last Δ solution.

Suppose $k < n$. The $A = (v_1 ... v_k) \Rightarrow$ PREF have a now no 0's as the last now.

 $k < n$
 $k = n$
 $k > n$ frames

 $k > n$ frames

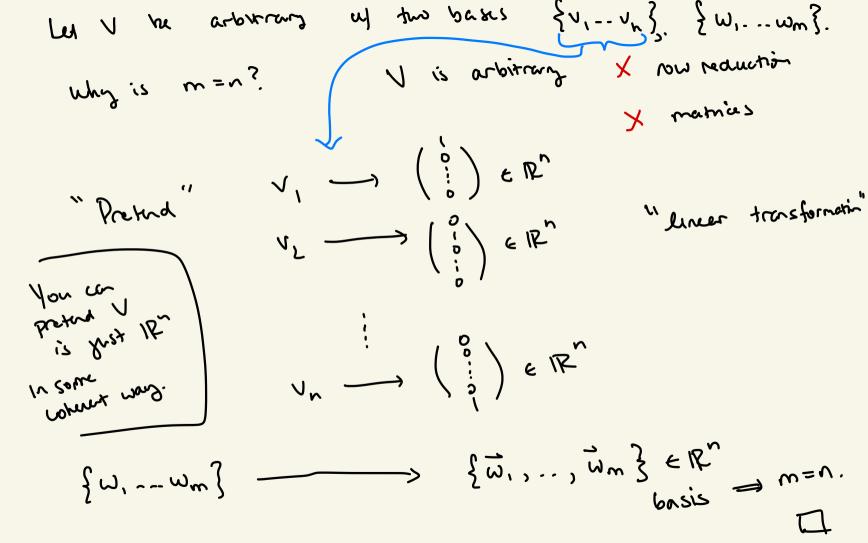


i) if k > n, the v,...vk are dependent.

2) If ken, then span (v,--.vk) = IR", not a spanning

let U = R". Consiar {u, .--uk}.

3) All bases & IR's has size n.



Subspaces are vector spaces in and to the reduces.

(Such a spaces in and to the reduces.

(Such a spaces in and to the reduces.

(Such a spaces in and to with a spaces of well argued.

(I)
$$\begin{pmatrix} -1 \\ 3 \end{pmatrix}$$
. Find during (w).

(I) $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$. Find during (w).

(I) $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$. Find during (w).

(I) $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$. Find during (w).

(I) $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$. Find during (w).

(I) $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$. Find during (w).

(I) $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$. Find during (w).

(I) $\begin{pmatrix} -1 \\ 3 \end{pmatrix}$. Find during (w).

Fundamental Subspaces & a matrix. Let A be a mxn matrix.

trix. This is actually a

demain, get where get of all out puts inputs live

 $T(\vec{\chi}) = A\vec{\chi} \in \mathbb{R}^m$ $n \times 1$ $m \times 1$

We can what we know about furtiens to A.

Next time ...

There exists a vector
$$\vec{0}$$
 such that $\vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$.

There exists a vector $\vec{0}$ such that $\vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$.

 $\vec{0}$ dozes not need to be $\vec{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. $f(\vec{x}) = 0$.

$$\vec{b} = (1,1)$$
 in this weird formula for addition.

Standard t

(x,y)
$$+(u,v)$$
 $(x,y) +(u,v)$

$$= (x\mu y^{+1})$$

$$= (x^{-1}y^{+1}) = (x^{-1}y^{-1})$$

$$= (x^{-1}y^{+1})$$

$$= (x^{-1}y^{+1})$$

$$= (x^{-1}y^{-1})$$

$$\frac{1}{Q} = (x', x_0)$$

$$= (x', x_0)$$

$$-(x,y) = xz$$

In this wird addition To role to play. $\vec{0} = (1,1)$ plays that role.

$$\vec{1} + \vec{0} = \vec{0} + \vec{v} = \vec{v} \cdot \leftarrow \text{ Note}$$

$$\vec{7} + \vec{0} = \vec{0} + \vec{7} = \vec{7} \cdot \leftarrow \vec{0}$$

(1, .-vn) will near have on of o's. We for I have a man span of

