

Linearly Independent vectors V1 ... VK (-) $C_1N_1+...+C_NN_K=0$ mean that $e_1=e_2=...=0$ Say w,...wm spar V Def Let V he a rector space. We when all vectors VEV are is the span of WI--Wm 1 e. U = spa (w, ... wm). = (x)=2(1)+3(1) Ex $W_1 = \begin{pmatrix} 0 \end{pmatrix} W_2 = \begin{pmatrix} 0 \end{pmatrix} W_3 = \begin{pmatrix} -1 \\ 2 \end{pmatrix} depnder + O(\frac{1}{2})$ Span (W, W2 W3) $\subseteq \mathbb{R}^2$, In fact spa (W, W, W3) = 12? They span 12? Every vector in 182 is a linear comb of these

Det let U hu a vector space. We say a ser of vertor U11 ---, Un forms a basis of V i,f 1) V,,..., Vh are linearly independent 2) V...... spar V. says that all vectors $\vec{J} = C_1\vec{v}_1 + ... + C_n\vec{v}_n$ are line combinations of v, --- vn 1) But since V,--- un on independent, no redundant vectors

You can think of a basis as a maximally independent set.

in that is I writer {v,...vn.w} is no longer

independent. $W = C_1 V_1 + \cdots + C_n V_n \implies dependent!$

Det let
$$V$$
 he a vector space. We say a set \mathcal{F} vector V_1, \ldots, V_n forms a basis V_1, \ldots, V_n are linearly independent V_2, V_1, \ldots, V_n span V_n .

Ex $V = \mathbb{R}^3$

$$V_1 = V_1 = V_2$$

$$V_2 = V_1 = V_2$$

$$V_3 = V_4 = V_5$$

$$V_4 = V_5$$

$$V_5 = V_6$$

$$V_7 = V_8$$

$$V_8 = V_8$$

$$V_8 = V_8$$

$$V_9 = V_9$$

$$V_9 =$$

July 1, ...,
$$\sqrt{2}$$
 are linearly independent

 $\sqrt{2}$ $\sqrt{2}$, ..., $\sqrt{2}$ $\sqrt{2}$

 $\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = 0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = 0$ c, (°)+ c, (°)+ c, (°) = 0

forms a basis & IR.

1) Suppose cie, + ciez + ciez = 0.

2) Claim spar(\vec{e}_1 , \vec{e}_2 , \vec{e}_3) = \mathbb{R}^3 Cour a vector ($\frac{\chi}{2}$) e \mathbb{R}^3 , ($\frac{\chi}{2}$) = $\chi \vec{e}_1$ + $\chi \vec{e}_2$ + $\chi \vec{e}_3$ = $\chi \vec{e}_1$ + $\chi \vec{e}_2$ + $\chi \vec{e}_3$ So ($\frac{\chi}{2}$) e spar(\vec{e}_1 , \vec{e}_2 , \vec{e}_3)

D.

e, e, e, e, e, e, e, are independent and Span, they form

e, e₂e₃ mar.

Ex let
$$V = IR^n$$

Det let $\vec{e}_i = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 \end{pmatrix}$ it spot $\vec{e}_i = R^n$

This is called the the standard Sasis vertor

It fact $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ forms a standard bear of iR^n

Standard bear of iR^n

Of iR^n

Standard iR^n

Standard iR^n

Standard iR^n
 iR^n

Ex
$$V_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $V_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ is a basis of $|P|^2$.

(1) Endopolet $P_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $P_2 =$

So $(x) \in Span((x)(x))$ So $(x)(x) \in Span(x)$ So $(x)(x) \in Span((x)(x))$ So $(x)(x) \in Span(x)$ So $(x)(x) \in Span((x)(x))$ So $(x)(x) \in Span(x)$

e, chow b

x,y axis

] Basis (axes

finite basis for faction vector spaces = continuous functions on [a,6] C. [0'2]

$$C^{\circ}[\alpha,5] = continuous functions on [\alpha,6]$$

$$\vec{f}_{1} = e^{\times} \quad \vec{f}_{2} = e^{2\times} \quad \vec{f}_{3} = e^{3\times}, \quad f_{4} = e^{4\times}, \dots$$

one all independent! - ho finite basis.

Infinite independent vectors $\vec{P}_{1} = \vec{1}, \vec{P}_{1} = \vec{\lambda}, \vec{\beta}_{2} = \vec{\lambda}^{2}, \vec{P}_{3} = \vec{\lambda}^{3}, \text{ etc.}$ on all independent.

Finite combinations => polynomial Infinite combination \Longrightarrow $f(x) = \sum a_n x^n$

We'll stick to finite for now.

$$Co[a,b] \ge Span(\omega s^2(x), sin^2(x), 1)$$
 is "finite" subspace $Co[a,b]$.

Claim: $Span(\omega s^2(x), sin^2(x), 1)$ has basis $\omega s^2(x), sin^2(x)$.

(x) (x), Sin 2(x). 1, 2, 22, 23, ---

P = vector space of all polynomials degree n. P(n) = vector space of polynomials of to $\overrightarrow{p} = A_0 + A_1 x^1 + A_1 x^2 + \dots + A_n x^n = \begin{pmatrix} a_0 \\ a_n \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_n \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_n \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_n \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_n \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_n \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_n \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_n \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_n \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_n \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_n \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_n \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_n x^n) = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ $(a_1 x^1 + \dots + a_$

Pop let vi...vn he a basis. The only weeker it ev 15 a unique linear combination of U,,..., Un. $\vec{v} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n$, at least 1 l.c. Note: Spa tells Thee's only 1! (WIS c; = d;)
GOAL Pf: Assume = C, N, + ... + C, N, 7 = d, v, + ... + d, vn. C(~, + --- + E~~, = d,~, + .-- + d~~, $(c_1 - d_1) \vec{v}_1 + (c_2 - d_2) \vec{v}_2 + ... + (c_3 - d_3) \vec{v}_n = 0 \times$ Since $v_1, ... v_n \rightarrow v_1$ 2) span

(c,-d,)v,+ (c,-d2)v2+...+ (c,-d2)v, =0 x This is a linear combination of independent vector = 0 So Ci - di = 0 ⇒ Ci = di Thm let I be a vector space, u) bases {v,-..un} N resport and $\{w_1 - w_{\underline{m}}\}$. Then N = m. (All bases have the same size!) So size of a basis is feature
We say dimension of U is the or inhard feature
size it one of it's haves Det We soy ainersion or U is the or in U!

Size up one of it's bases. (dim (U) = n.) Continue