

For the rewrd,
Exam 2 is an 7/10 !
Loose Ends from §3].
Pf of Polarization is is an the
HW. (3.1.12)
Pop let V be an inner product
space. Then

$$211211^{2} + 21121^{2} = (12+21)^{2} + 112-211^{2}$$

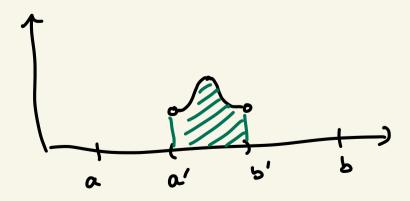
Pf 10+2112 + 112-212 = (12+21)^{2} + 112-2112
 $12+21121^{2} = (2+2)^{2} + 112-2112$

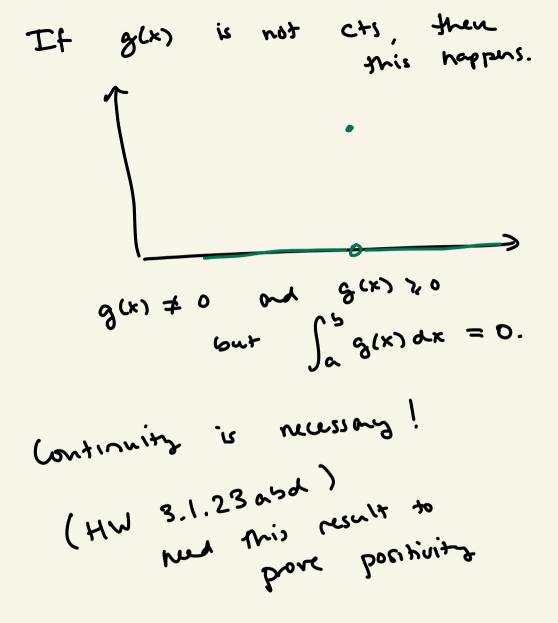
$= \langle n - n \rangle + \langle n - n \rangle + \langle n - n \rangle$
$= \langle v, v \rangle + \langle v, w \rangle + \langle v, w \rangle + \langle v, w \rangle$
$r = c v_1 w_2 = c v_1 w_2$
L (WW)
- 5910
= 2(x'x) + 5(x''x)
$-21711^{2} + 211711^{1}$
. Le any line
This works for any inner Product, not just dot
product!

Recall the l² inner product. $V = C^{\circ} [a_{1}b].$ $Lf_{i}g_{i} = \int_{a}^{b} f(x)g(x) dx.$ $\|f\| = \int \int_{a}^{b} f(x)^{2} dx$ This is an Inn product. · <f.f>>0 for f≠0 and (posiniuing $\langle 0, 0 \rangle = 0.$ axiom)

 $\int \frac{P_{rop}}{P_{rop}} \int \det g(x) \neq 0 \text{ and } g(x) \gamma, 0.$ on [a,b]. If g(x) is chs
(then $\int_{a}^{b} g(x) dx > 0.$

From Calc2: If g(x) > 0 $=) \int_{\alpha}^{b} g(x) dx (3)0 .$





§ 3.2 Inequalities
The let V be an one product space. let v, v e V.
Then $ \langle v v \rangle \leq v \cdot w $.
Cauchy - Schwartz Inequality
Pf If w=0, then (<v,w)1=0 and v 1 w 1=0 80 the inequality holds.</v,w)1=0
If w \$ 0, then we can consider the following.

$$\begin{aligned} \left| e^{t} + e^{t} e^{t} R \cdot e^{t} e^{$$

We'll get the dosest inequality
from
$$0 \le ||w + tw ||^2$$
 when
t makes this parebola
at it's minimum value.
Therefore we minimize the polynomial
plet) = $||w||^2 t^2 + d(v,w) t + ||w||^2$
whe plus is has a min,
p'(t) = 0.
p'(t) = 0.
p'(t) = 2 ||w||^2 t 7 $d(v,w) = 0$
 $d_0|ving, t = -\frac{(v,w)}{||w||^2}$ back into
parebola.

$$0 \leq || \vee + \left(-\frac{\langle \vee, \omega \rangle}{|| \vee ||^{2}} \right) \vee ||^{2}$$

$$= || \vee ||^{2} + 2 \langle \vee, \omega \rangle \left(-\frac{\langle \vee, \omega \rangle}{|| \vee ||^{2}} \right)$$

$$+ || \vee ||^{2} \left(-\frac{\langle \vee, \omega \rangle}{|| \vee ||^{2}} \right)$$

$$= || \vee ||^{2} - \frac{2 \langle \vee, \omega \rangle}{|| \vee ||^{2}} + \frac{\langle \vee, \omega \rangle^{2}}{|| \vee ||^{2}} \right)$$

$$= || \vee ||^{2} - \frac{\langle \vee, \omega \rangle}{|| \vee ||^{2}} \neq 0$$

$$|| \vee ||^{2} \geq \frac{\langle \vee, \omega \rangle}{|| \vee ||^{2}} \neq 0$$

$$|| \vee ||^{2} \geq \frac{\langle \vee, \omega \rangle}{|| \vee ||^{2}} = 2 \langle \vee, \omega \rangle ||.$$

$$\frac{E_{Y}}{U_{1}} = \frac{1}{V} = \frac{1}{V_{1}} =$$

First ux of C-S is to ws O. (CV, W>) & (|~ N / 1/~ N |<v,~>| |<v,~>| < \ යාව $=) - (\leq (v, w) \leq$ COSO, SING me also bounded 67 -1,1. V = IR W dot product V= (1,0) and w= (0,1) $w \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0$

$$\frac{(v_1v_1)}{||v_1|| ||w_1||} = \frac{0}{|v_1||} = 0$$

$$\frac{(v_1v_1)}{|v_1|| ||w_1||} = \frac{0}{|v_1||} = 0$$

$$\frac{(v_1v_1)}{|v_1|| ||v_1||} = \frac{(v_1v_1)}{|v_1||} = 0$$

$$\frac{(v_1v_1)}{|v_1|| ||v_1||} = \frac{(1)(v_1 + (1)(v_1))}{|v_1|| ||v_1||} = \frac{(1)(v_1 + (1)(v_1))}{|v_1|| ||v_1||} = \frac{1}{|v_1||v_1||} = \frac{1}{|v_1||v_1||}$$

$$= \frac{1}{|v_2||v_1||} = \frac{(1)(v_1 + (1)(v_1))}{|v_1||v_1||} = \frac{1}{|v_1||v_1||} = \frac{1}{|v_1||v_1||}$$

Def let U be an inner
product space.
Define the angle
$$\theta$$
 between
 $\nabla_1 W \in V$ by the formula
 $\theta = (\omega s^{-1} (\frac{(v_1 w)}{||v|||}))$
or:
 $(\omega s(\frac{\tau}{2}) = (\omega s(\frac{3\pi}{2})) = 0$
is $(\omega s^{-1}(0) = \frac{\pi}{2}) = \frac{3\pi}{2}$
Restrict (ωs^{-1}) to values between
 $0, \pi$.
 $(\omega s^{-1}(0) = \frac{\pi}{2}) = (\omega s(\frac{1}{2}) = \frac{\pi}{4})$

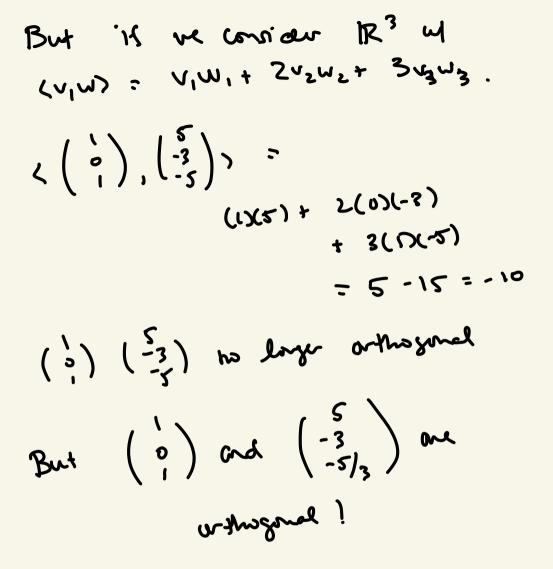
N

$$\begin{aligned} & \left(\text{Lt} \quad \text{V} = C^{\circ} \left[0, 1 \right] , \quad \text{L}^{\perp} \text{ imm product} \\ & \left(\text{Ompide} \quad \text{Ongle}^{\text{ind}} \text{ because} \quad f(x) = x \\ & g(x) = x^{2} \\ & g(x) = x^{2} \\ & \left(\frac{(f_{1}, g)^{2}}{\|f(x)\|} \right) \\ & = \left(\frac{(f_{1}, g)^{2}}{\|f(x)\|\|} \right) \\ & = \left(\frac{(f_{1}, g)^{2}}{\|f(x)\|} \right) \\ & = \left(\frac{(f_{1}, g)^{2}}{\|f(x)\|\|} \right) \\ & = \left(\frac{(f_{1}, g)^{2}}{\|f(x)\|\|} \right) \\ & = \left(\frac{(f_{1}, g)^{2}}{\|f(x)\|\|} \right) \\ & = \left(\frac{(f_{1}, g)^{2}}{\|f(x)\|} \right) \\ & = \left(\frac{(f_{1}, g)$$

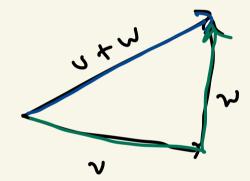
Permumber that in
$$\mathbb{R}^{2}$$

(OS $(\mathbb{T}/L) = 0$
Two vectors is \mathbb{R}^{2} of dot product
(Re $\vee \perp w$ iff $(v_{1}w) = 0$.
(OS $\theta = \frac{\langle v, w \rangle}{\|v\|\| \|v\|}$
 $\langle \vartheta = \frac{\langle v, w \rangle}{\|v\|\| \|v\|}$
 $\langle \vartheta = \frac{\langle v, w \rangle}{\|v\|\| \|v\|}$
 $\langle \Box = \frac{\langle v, w \rangle}{\|v\|\| \|w\|} = 0$
 $\langle \Box = \frac{\langle v, w \rangle}{\|v\|\| \|w\|} = 0$
 $\langle \Box = \frac{\langle v, w \rangle}{\|v\|\| \|w\|} = 0$

Take this result and use in for
gerused ince products.
Det led U be an ine product
space. Les
$$v, v \in V$$
.
Then U is orthogonal to w
(written $V \perp w$) if $\langle v, w \rangle = 0$.
(orthogonal is forcy for perpendicular)
John: orthogonal depends on using product?)
 $E_X (1,0,1)^T (5,-3,-5)^T \in IR^3$
 $w \mid def prod.$
 $\langle {\binom{1}{2}}, {\binom{-3}{-5}} = (1)(5) + (0)(-3)$
 $+ (1)(-5) = 0$



$$\begin{array}{rcl} Pf & ||v+w||^2 = \langle v+w,v+w \rangle \\ &= \langle v,v \rangle + 2 \langle v,w \rangle + \langle vv,w \rangle \\ &= \langle |v||^2 + 2 \langle v,w \rangle + \langle ||v||^2 \\ &= \langle |vv||^2 + 2 \langle |vv|| ||v|| + ||w||^2 \\ &\leq ||vv||^2 + 2 \langle ||vv|| ||v||| + ||w||^2 \\ &= (||v|| + ||w||)^2 \end{array}$$



Diaguels and show?

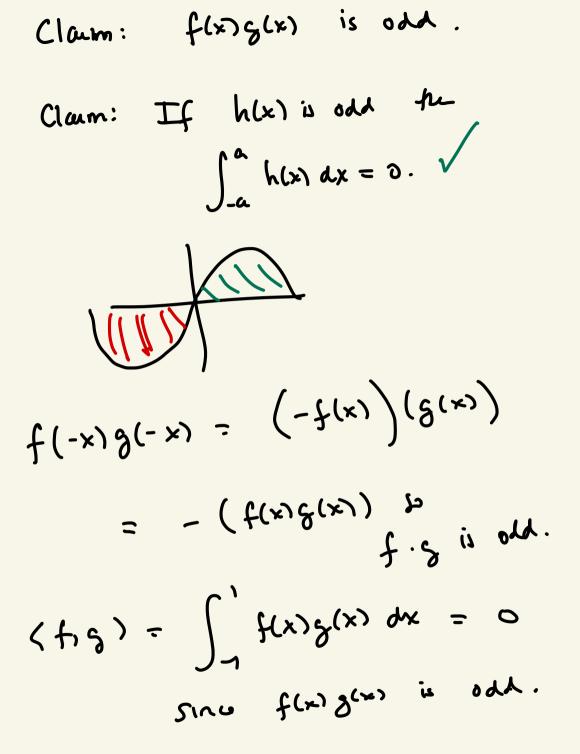
Then	ミンナ	<i>く</i>	ፈ	((~))	۲)[~ \
•						

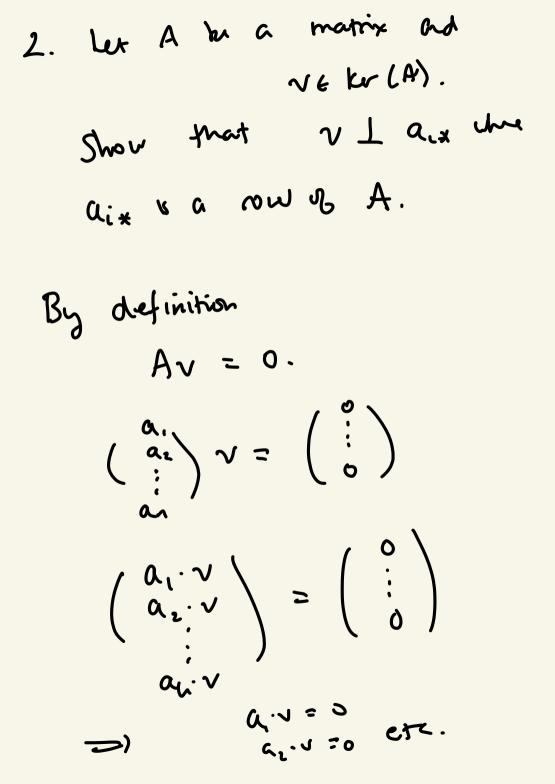
let V be an inner product Thm space. Let v, we V.

Taking Sq rowt of both Sides

$$||v+v||^{2} \leq (||v|| + ||w||)^{2}$$

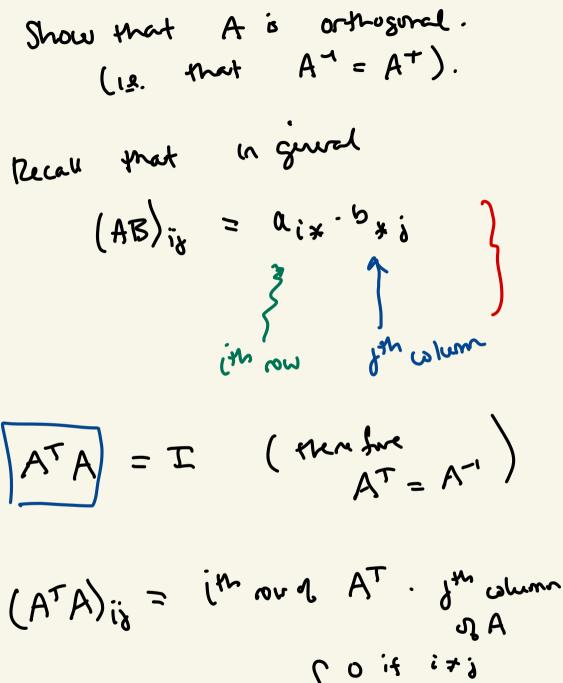
 $||v+w|| \leq ||v|| + ||w||^{2}$
 $||v+w|| = ||v||^{2}$
 $||v|| = ||v||^{2}$



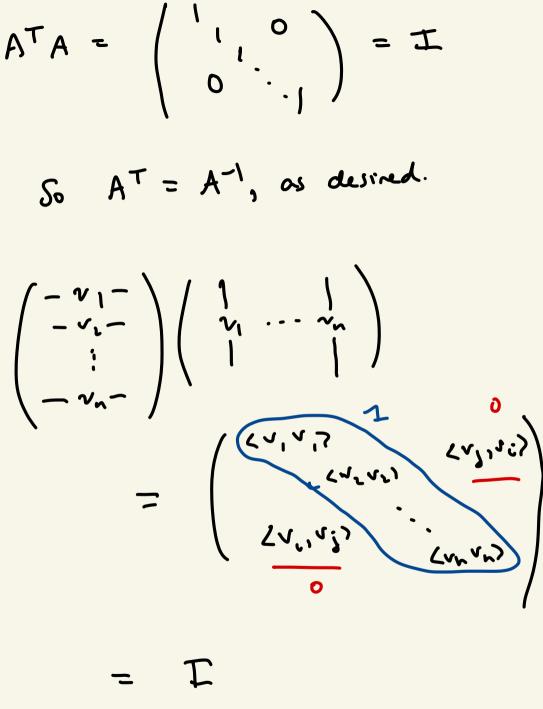


$$V \cdot a_{i} = 0 \implies v \perp a_{i} \quad \forall i$$

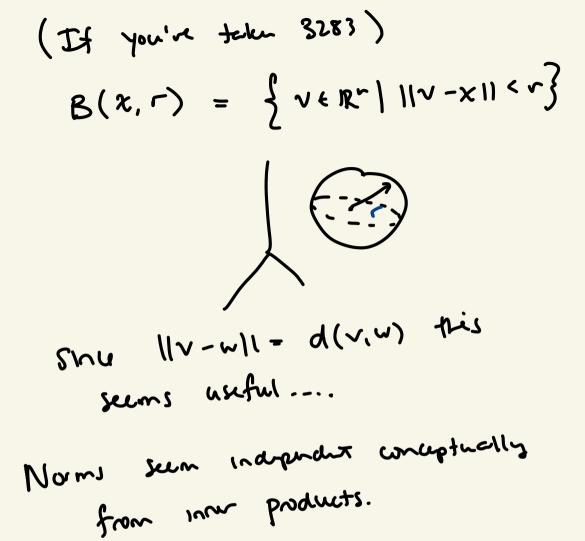
S. Orthogonal matrices.
A matrix is called orthogonal
if $A^{-1} = A^{T}$. $(A \text{ is})$
if $A^{-1} = A^{T}$. $(A \text{ is})$
(et $A = (V_{1} \dots V_{n})$ $(V: \text{ is the } V_{n})$
 $(v_{i} \cdot v_{i} = 0 \text{ if } i \neq j$
 $v_{i} \cdot v_{i} = 0 \text{ if } i \neq j$
 $v_{i} \cdot v_{i} = 1$
 E_{X} $\begin{pmatrix} l & 0 \\ 0 & l \end{pmatrix}$ $\begin{pmatrix} \frac{1}{V_{L}} & -\frac{1}{V_{L}} \\ \frac{1}{V_{L}} & \frac{1}{V_{L}} \end{pmatrix}$
(Recall: columns are orthogonal to
each other, and they're unit
 $vectors$.)



 $= v_i \cdot v_j = \begin{cases} 0 & i \notin i \neq j \\ 1 & i \notin i = j \end{cases}$



§ 3.3 Norms
Gun an inner product
$$\langle v, w \rangle$$
,
wit gues rin to a horm
 $||v|| = \sqrt{\langle v, v \rangle}$.
 $2||v||^{2} + 2||w||^{2} = ||v+w||^{2} + ||v-w||^{2}$
 $||v+w|| \leq ||v|| + ||w||$
There only involve the horm.
Maybe a norm should be a
(on cept in on of itself.
Furthermore $d(v,w) = ||v-w||$
Is a notion of distance.



Def A horm on a vectur space V is Gy fuction $\|-\|: V \longrightarrow \mathbb{R} \quad \text{st.}$ · [[v]l > D (positivity) · || c v || = | c | || v || (homogeneitz) · || v+ w || ≤ || v || + || w ||. ([Inequality)

$$\frac{E_{X}}{I} : (ut \quad V = \mathbb{R}^{n}.$$

$$\|V\|_{I} = \sum |V_{i}| \quad is \quad a \text{ norm.}$$

$$called the
$$\frac{L^{2} \text{ norm on } \mathbb{R}^{n}}{I}$$

$$\cdot \|V_{i}\|_{I}$$

$$= |V_{i}| + |V_{2}| + \dots + |V_{n}|$$

$$\geq 0 \quad (\text{ possibility } \sqrt{)}$$

$$\cdot \|cv\|_{I} = |cv_{i}| + \dots + |cv_{n}|$$

$$= |c|(|v||_{I} + \dots + |cv_{n}|)$$

$$= |c|(|v||_{I} + \dots + |v_{n}|)$$

$$= |c| \|V\|_{I}$$

$$\cdot \|v+v\|_{I} \leq |v||_{I} + \|w\|_{I}$$

$$\geq |v| + |w|| \leq \sum |v||_{I} \geq |w||$$$$

$$||v+v||_{n}$$

$$= ||(v_{1}+w_{1}, ..., v_{n}+w_{n})||_{1}$$

$$= \sum |v_{1}+w_{1}|_{n}$$

$$||v|| + ||w||_{1} = \sum |v_{1}| + \sum |w_{1}|$$

$$|x+y| \leq |x| + |y|$$

$$|x+y| \leq |x| + |y|$$

$$(This is yust the A in equality$$

$$fur IR^{1} as an inner product$$

$$Space.$$

$$So A meg. ob ||-||_{1} power.$$

Pour wing any number of methods

Ex V=Rⁿ $\|v\|_{0} = \max \{ |v_1|, ..., |v_n| \}$ This is a norm. (L^{oo}-norm) $\|v\|_{\infty} = \max \{ |v_1|, ..., |v_n| \} \}_{0}$ · || cv || o = mox { | cv, 1, .-, | cv, 1} = | (| max { 1~1, ..., 1~n}} = |c| ||v|100 $\cdot || \vee + w || \leq || \vee || + || w ||$ Max { | ~, + w, |, ---, | vn + wn | } 2 max {Iv,1, ..., Ivn]}. + max {]w1, ..., [W1] . Turns out to be true. Pf tomorrow.

$$E_{X} \quad ||^{2} - norn$$

$$||v||_{2} = \sqrt{2} |v_{1}|^{2} = \sqrt{2} v_{1}^{2}$$

$$||v||_{2} = \sqrt{2} \cdot v$$

$$||v||_{2} = \sqrt{2} \cdot v$$

$$||v||_{2} = \sqrt{2} \cdot v$$

$$||v||_{2} = \sqrt{2} ||v|| + ||w|| \quad pown$$

$$earlie$$

$$||v||| \leq ||v|| + ||w|| \quad pown$$

$$earlie$$

$$(laim : There' \ s \ ho \ possible$$

$$inv \ product \quad such \quad suc$$