

book ends from Yestorday... If of the Lar-now or 12". ||v|| = max {(v,1,..., |vn|} Pf of A-inequality for 11-110. VIWE IR = max { | v, t w, l, lv, twel, ..., lv, twol} 112+21100 Max {(v,1+ |w1), ..., |Un| + |wn|} WLOG that |VII + |VII adrieves the maximum. But let |vi| = max { 12,1, ..., 12,1} |w; | = max { |w, |, ..., |w, |} 14,1+1W1 & 1411 + 1W1 / ~~~

14,1+ 14,1 < max {14,1, ..., 14,1} + max { | w,1, ..., | wh1 } So in wnousin 11 u + w/100 < max { |u, | + |u, | , ..., |u, | + |uh | } = max > 1011, ..., 14n1} + max { In, 1, ..., In, 1} 1/41100 + 11 m11 00

Therefore the La norm satisfies the N-ing.

Other look end: Claim: ||v||1 and ||v||0 do not arise from inner products. There is no one product <-,->
such that or 1/2/10 = J(2/1) 11M1 = J(V,V) Every inn product gives you a norm. But not every norm

ames from on inn poduat.

let v re a normed Proposition: V.S., L.g. V is equipped WITH a norm |1-11: V-3R. Then I am now product (-,-) 5.t. |1/2/1 = \(\zert{\zert_1'\zert_2}\) Iff the norm satisfies the parallelogram identity

 $Pf \quad \text{If} \quad ||-|| \quad \text{cam from on inm}$ $Pf \quad \text{If} \quad ||-|| \quad \text{cam from on inm}$ $Product, \quad \text{then polarization id tests}$ $\text{You} \quad \left(||v+w||^2 - ||v-w||^2 \right)$ $\left(v_i w \right) = \frac{1}{4} \left(||v+w||^2 - ||v-w||^2 \right)$ has to be the inner product.

Ti	ums down to showing	y that
	T (ho+m112- ha-m112)	Sahifies
	the ine product	Dog ams.
•	Bilinearity only true	when parallelogous identity holds
	Symmetry /	
	Positivity /	ū .
AII	we have to do is sho	u that

11-111 and 11-11 as don't satisfy the para lelogram identity.

$$|| (v_1, v_2) ||_1 = |v_1| + |v_2|$$

$$|| (v_1, v_2) ||_0 = || max {|v_1|, |v_2|}$$

$$|| (v_1, v_2) ||_0 = || max {|v_1|, |v_2|}$$

$$|| (v_1, v_2) ||_0 = || max {|v_1|, |v_2|}$$

$$|| (v_1, v_2) ||_0 = || max {|v_1|, |v_2|}$$

$$|| (v_1, v_2) ||_0 = || max {|v_1|, |v_2|}$$

$$|| (v_1, v_2) ||_0 = || max {|v_1|, |v_2|}$$

$$|| (v_1, v_2) ||_0 = || max {|v_1|, |v_2|}$$

$$|| (v_1, v_2) ||_0 = || max {|v_1|, |v_2|}$$

$$|| (v_1, v_2) ||_0 = || max {|v_1|, |v_2|}$$

$$|| (v_1, v_2) ||_0 = || max {|v_1|, |v_2|}$$

$$|| (v_1, v_2) ||_0 = || max {|v_1|, |v_2|}$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_2|$$

$$|| (v_1, v_2) ||_1 = || v_1| + || v_$$

Mully, mullo one all example, to a

11 v11p = (2 1v:1p)

This is a norm for 15 ps a.

$$V = (115.3)$$

let
$$V = (o[a,b].$$
 There's and $V = (o[a,b].$ This vector space as well.

(b) $V = (o[a,b].$ There's and $V = (o[a,b].$

Unit Vector and Unit Spheres. I be a normed vector space. for all v =0, let $u = \frac{2}{||x||} = \frac{1}{||x||}$ u is called the unit vector associated to ~. ||u|| = 1. Prop:

Unit sphere for 11-11.

Let V he a normed vector space.

Let
$$S_1 = \{ v \in V | ||v|| = 1 \}$$

= Set of unit vectors.

Depending on 11-11, S_1 will have

a different shape.

Let's fix $V = |R^2$.

 $|V| = |V| = |V| = 1$
 $|V| = 1$
 $|V|$

what is the relationship hustmen truse
spheres?

Theorem: Let $V = IR^n$. Then for
two norms II - IIa II - IIb, then
exist constants $C_1 d$ such

exist constants c,d such
that

C || V||a \leq || V||b \leq d || V||a

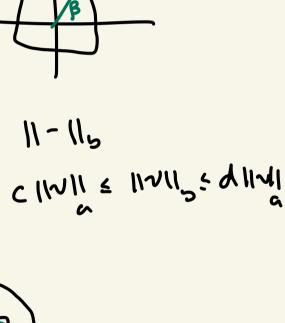
U v e V simultaneously.

(So c,d one independent of v).

Slogan: Any two norms on 12h one "equivalent".

Company of the man sphrasion and the sphrasion are sphrasion and the sp 1/21/5= B. 11-115 11-112 he inequality

1/21/ = X



WERM.

Pf outline ! We need C, d St. clivila = livila II-113 varia on the Unit spher of 11-11a. d = max { ||ullo) ||ulla = 1 }. Inequality follows.

Purisir tomorrow

my hope of an Topology open set 5 & P(x) T = { open suts 16 x } st. yet XET it工 y Uiet U Ui et U.n...n Unt T.

て、らてで・

X=12 Uogen 3 h^c is finite.