

Yesterday Aufined eigenvalues / eigenvalues
$Av = \lambda v$ $for \lambda$.
$\rightarrow V_{\lambda} = kr(A - \lambda I)$
If λ is an eigenvalue
VI is a nonsrivial subspace.
V_{λ} is sometimes called the eigenspace \mathcal{B} λ .
Two dufficulties (i) If & repeats, flue may be too few eigenvectors.
alg. mult ub $\lambda \gtrsim dim V_{\lambda}$. # 1 minus $\lambda \gtrsim 13$ ub ind. represents a eigenvectors

(2)
$$dut(A - \lambda I) = 0$$
 may have
(amplex solutions.
 $A : \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ as complex
vector space
You may not be able to find
 $\lambda_{1} \vee \lambda_{1}$ it you are over the
real.
E.s. $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$: $\mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$
has no real eigenvalues / eigenvectors
 $dut(A - \lambda I) = \lambda^{2} + 1 = 0$
 $\implies \lambda = \pm i \quad \forall_{i} \approx {i \choose 1}$
 $\sqrt{-i} = {-i \choose i}$

Recall: If A is a square matrix
ve duprie trace tr(A) to
$v_{\ell} + r(A) = \sum_{i=1}^{n} a_{ii} = a_{ii} + a_{22} + a_{33}$
E_{x} + $r \begin{pmatrix} 0 & 1 \\ -1 & 2 \\ 3 & 1 \end{pmatrix} = 1 + 2 + 2 = 5$
Thm let A kunxn wy eigenvalues
L. L, Ln (may repeat).
Then det $(A) = \prod \lambda_i = \lambda_1 \lambda_2 \dots \lambda_n$
and $fr(A) = \sum_{i=1}^{n} \lambda_i = \lambda_i + \lambda_n \dots + \lambda_n$
$E_{X} A = \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 1 & 2 \end{pmatrix} \lambda = 1, \lambda = 1, \lambda = 2$
dut $(A^{+}) = 1 \cdot 1 \cdot 2 = 2$ $fr(A^{+}) = 0 + 2 + 2 = 4$ = $1 + 1 + 2 = 4$

$$Pf: Since P_{A}(\lambda) = det(A - \lambda I)$$
is a polynomial then, it is of the
form
$$P_{A}(\lambda) = C_{n}\lambda^{n} \pm C_{n-1}\lambda^{n-1} \pm ... \pm C_{1}\lambda^{1} \pm Co$$
let's use the properties of det(A - λI)
to calculate C_{n} , C_{n-1} , C_{0} .

Claim: $C_{n} \equiv (-1)^{n}$.

The only way to get λ^{n} is by

multiplying the diagonals $U_{b}A - \lambda I$.

 $A - \lambda I = \begin{pmatrix} 0 & -\lambda & 0 & -\lambda \\ 0 & -\lambda & 0 & -\lambda \end{pmatrix}$

So det
$$\begin{pmatrix} a_{11} - \lambda & a_{12} \dots \\ a_{2n} & \ddots & a_{2n} - \lambda \end{pmatrix}$$

the only way to get λ^n is
by clocking at
 $(a_{11} - \lambda)(a_{2n} - \lambda) \dots (a_{2n} - \lambda)$
By FOILING,
 $(a_{11} - \lambda)(a_{2n} - \lambda) \dots (a_{2n} - \lambda)$
 $= (-i)\lambda^n + (a_{2n} - \lambda)(-i)^{n-1}\lambda^{n-1}$
 $(a_{11} - a_{2n} + \dots + a_{2n})(-i)^{n-1}\lambda^{n-1}$
 $+ \dots$
Since this is the only term in
the determinent that contributes
to λ^n ,

the leading coefficient of

$$P_A(\lambda) = dut (A - \lambda I)$$

is $(-1)^n$.
Eq. $A = \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix}$
 $dut (A - \lambda I) = dut \begin{pmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{pmatrix}$
 $\begin{pmatrix} (3 - \lambda)(3 - \lambda) & -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$
 $\begin{pmatrix} (-1)^L \lambda^L + (3 + 3)(-1)^L \lambda + 9 \\ -1 \end{pmatrix}$
 $1 \cdot \lambda^2 - 6\lambda + 8$

$$E_{A} = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \end{pmatrix}$$

$$P_{A}(\lambda) = dut (A - \lambda I)$$

$$= dut \begin{pmatrix} 0 - \lambda & -1 & -1 \\ 1 & 2 - \lambda & 1 \\ 1 & 1 & 2 - \lambda \end{pmatrix}$$

$$= (0 - \lambda)(2 - \lambda)(2 - \lambda) + \cdots$$

$$mus term that$$

$$mus term that$$

$$mus term that$$

$$= (-1)^{3} \lambda^{3} + (0 + 2 + 2)(-1)^{2} \lambda^{2}$$

$$+ \cdots$$

$$= \Theta \lambda^{3} + 4 \lambda^{2} - 5 \lambda + 2$$

 $Tf P_{A}(\lambda) = C_{n}\lambda^{n} + C_{n-1}\lambda^{n-1} + \cdots + C_{1}\lambda + c_{n}$

 $C_{n} = (-1)^{n}$ $P_{A}(\lambda) = (-1)^{\lambda} + (C_{n-1})^{\lambda} + C_{1}^{\lambda} + C_{1}^{\lambda} + C_{1}^{\lambda} + C_{1}^{\lambda} + C_{1}^{\lambda} + C_{1}^{\lambda}$

Two out	ghal	the only	turn th	cr f
contro	ntes to	У~-,	مر الم كا	
(۵٬	λ)(a	n- X)	(ann - 2)
			•	. ۱ .

$$dut \begin{pmatrix} 0 - \lambda & -1 & -1 \\ 1 & 2 - \lambda \end{pmatrix} = \begin{pmatrix} 0 - \lambda \end{pmatrix} dut \begin{pmatrix} -1 & 2 - \lambda \end{pmatrix}$$
$$- \begin{pmatrix} -1 \end{pmatrix} dut \begin{pmatrix} 1 & 2 - \lambda \end{pmatrix}$$
$$+ \begin{pmatrix} -1 \end{pmatrix} dut \begin{pmatrix} 1 & 2 - \lambda \end{pmatrix}$$

only way to get X3

only way to get 2

Thuefore

$$P_{A}(\lambda) = (-1)^{n} \lambda^{n} + (A_{11}\lambda^{n+1} + ... + c_{1}\lambda + c_{0})$$

 $= (-1)^{n} \lambda^{n} + (A_{11} + ... + A_{nn})(-1)^{n} \lambda^{n} + \frac{1}{1 + ... + 1} + C_{1}\lambda^{1} + C_{0}$
FOILONS tells w then
 $C_{n-1} = (A_{11} + ... + A_{nn})(-1)^{n-1}$
Eq. $A = (\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix})$
 $P_{A}(\lambda) = \lambda^{1} - 6\lambda + 8$
 $-6 = (-1)^{2-1}(3+3)$
 $A = \begin{pmatrix} 0 - 1-1 \\ 1 & 2 \end{pmatrix}$
 $P_{A}(\lambda) = -\lambda^{3} + 4\lambda^{2} - 5\lambda + 2$
 $4 = (-1)^{3-1}(0+2+2)$
FOILINS

E

$$P_A(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} (a_{n+1} - + a_{n-1}) \lambda^{n-1}$$
$$+ \dots + C_1 \lambda + C_0 \cdot$$

On the other hand ... $\lambda_1, ..., \lambda_n$ are solutions to $\mathcal{P}_{\mathcal{A}}(\mathcal{A})$.

$$P_{A}(\lambda) = (-1)^{n} (\lambda - \lambda_{1})(\lambda - \lambda_{2}) \dots (\lambda - \lambda_{m})$$

FOIL ...
=
$$(-1)^{n} (-1)^{n} (-1)^{n} (\lambda_{1} + \lambda_{2} + ... + \lambda_{n}) \lambda^{n-1}$$

+ ... + $(-1)^{n} (-1)^{n} (\lambda_{1} - ... + \lambda_{n})$

$$= (-1)^{n} \lambda^{n} + (-1)^{2n-1} (\lambda_1 + \dots + \lambda_n) \lambda^{n-1}$$

$$+ \dots + (\lambda_1 \lambda_2 \dots \lambda_n)$$

So
$$C_{n-1} = (-1)^{n-1} (a_{u} + \dots + a_{nn})$$

 $C_{n-1} = (-1)^{n+1} (\lambda_1 + \dots + \lambda_n)$
 $= (-1)^{n+1} (a_{u} + \dots + a_{nn})$
 $= (-1)^{n+1} (\lambda_1 + \dots + \lambda_n)$
 $\Rightarrow \lambda_1 + \dots + \lambda_n = a_{u+1} \dots + a_{nn}$
 $= tr(A).$
 $C_0 = \lambda_1 \lambda_1 \dots \lambda_n.$
But $C_0 = P_A^{(0)}$
 $= (-1)^n o^n + C_{n-1} o^{n-1}$
 $+ \dots + C_1 o^{n+1} C_0$
 $P_A(o) = dut (A - \partial I) = dut (A)$
 $dut (A) = \lambda_1 \lambda_1 \dots \lambda_n$ II

Period the result:
alg mult. 06
$$\lambda$$
 > dim (V_X)
the a times λ = the vid.
represents eigenvectors
End A = $\begin{pmatrix} 0 - 1 - 1 \\ 1 & 2 \\ 1 & 1 \end{pmatrix}$
 $\lambda = 1$, $\lambda = 1$, $\lambda = 2$
alg mult up A=1 is 2.
dim (V_{A=1}) = dum (lum (A - 2I))
= dim lum $\begin{pmatrix} -1 - 1 & -1 \\ 1 & 1 \end{pmatrix}$
= 2
alg mult up A=1 = dim V₁.

$$E_{2} \quad A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$Out (A - \lambda I) = Out (\begin{pmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{pmatrix})$$

$$= (1 - \lambda)^{2} = D$$

$$\lambda = 1, \quad \lambda = 1 \quad alg mult ob \lambda > 1$$

$$= 2$$

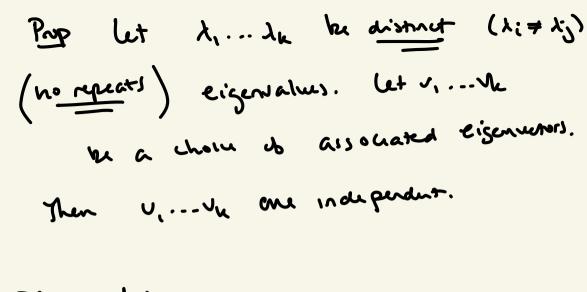
$$Olim (V_{1})$$

$$= dim (lar(A - 1I))$$

$$= dim (Var(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}) = # Ub$$
frue
columns
$$= 1$$

alg mult = 2 dim $(V_1) = 1$

Even though
$$\lambda = 1$$
 repeats, we get 2
eigenvector.
 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} \begin{pmatrix}$



 $P_{4}: let \\ C_{1}V_{1} + \dots + C_{k}V_{k} = 0.$

$$A(c_1v_1+\cdots+c_nv_n)=0$$

$$C_{\lambda} \lambda_{\nu} + \dots + C_{\mu} \lambda_{\mu} \nu_{\mu} = 0$$

Shu $\nu_{\mu} - \nu_{\mu}$ the eigenvectors!

 $\lambda_{k}(c_{1}\vee_{1}+\ldots+c_{k}\vee_{k})=0$ $c_{1}A_{k}\vee_{1}+\ldots+c_{k}\lambda_{k}\vee_{k}=0$

Take 2 equations

$$C_1 \lambda_1 \vee_1 + \dots + C_k \lambda_k \vee_k = 0$$

 $C_1 \lambda_k \vee_1 + \dots + C_k \lambda_k \vee_k = 0$
Subtrack --
 $C_1 (\lambda_1 - \lambda_k) \vee_1 + C_2 (\lambda_2 - \lambda_k) \vee_k = 0$
 $+ \dots + C_{k-1} (\lambda_{k-1} - \lambda_k) \vee_{k-1} = 0$
We reduced to showing $V_1 \dots \vee_{k-1}$ induction
free independent.
Repeat process to reduce $V_1 \dots \vee_{k-1}$
Repeat which $\dots = \{\nu_1\}$, which is
independent $\implies C_1 = 0$
Plug back into preven step
 $\implies C_1 = 0$

$$E_{\underline{X}} \quad A = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix},$$

$$\lambda = 2, \quad \lambda = 4$$

Here eigenvalues one distinct!
No repeats

$$\longrightarrow \quad v_{1} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \quad v_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

form a basis & R².

Pantial repult
if
$$\lambda$$
 has \longrightarrow eigenvectors
ho repeats formula.
Change of basis formula.
 $T(x) = Ax$ in standard coords
 $T(x) = Bx$ in standard coords
 $T(x) = Bx$ in standard coords
 $B = S^{-1}AS$ $S = (v, v_2)$.
B = S^{-1}AS $S = (v, v_2)$.
Unce if our basis is the basis
Unce if our basis is the basis

$$\underbrace{E_{x}}_{A} A = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$$

$$A : \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$$

$$T(x) = Ax \quad in \quad Standard \\ Coordinates.$$

But what if we picked $V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ coords?

$$T({}^{x}_{\mathcal{Y}})_{V,VL} = T(x({}^{\prime}) + g({}^{\prime}))$$

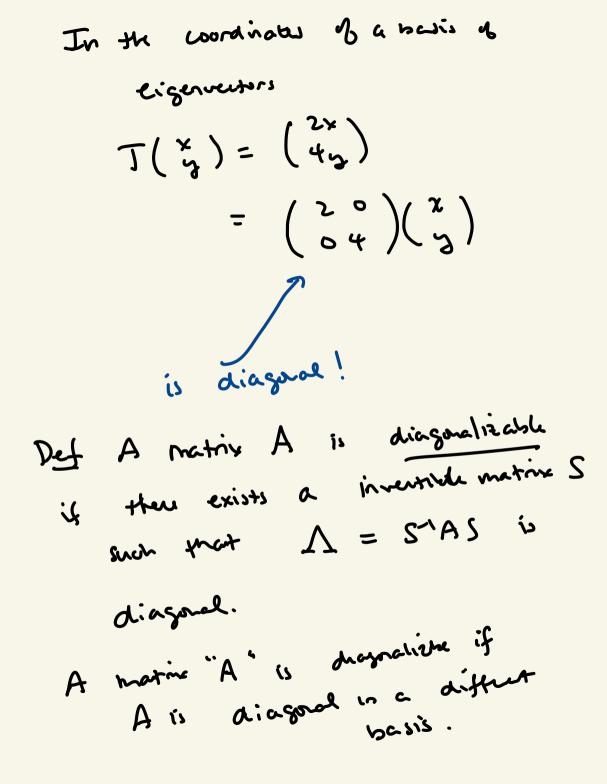
$$= \chi T({}^{\prime}) + gT({}^{\prime})$$

$$= \chi A({}^{\prime}) + gT({}^{\prime})$$

$$= \chi A({}^{\prime}) + gA({}^{\prime})$$

$$= \chi 2({}^{\prime}) + gH({}^{\prime})$$

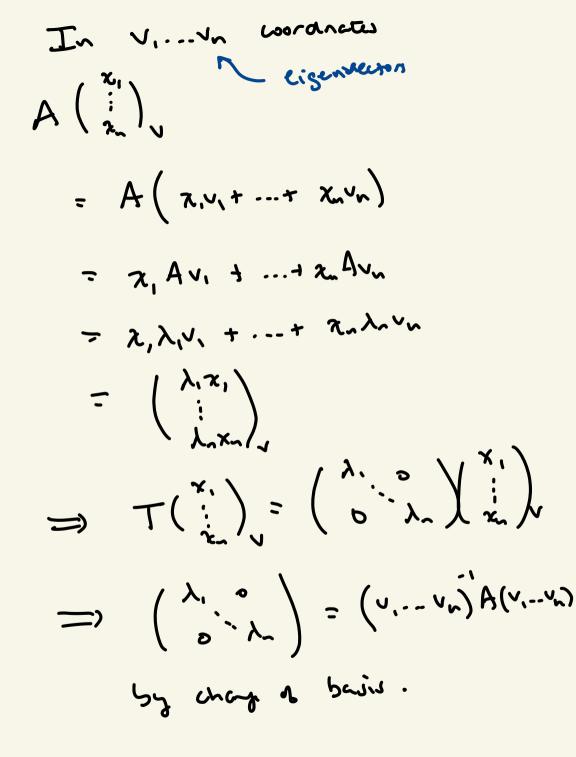
$$= (2\chi)({}^{\prime}) + (Hg)({}^{\prime}) = ({}^{2\chi})_{HL}$$

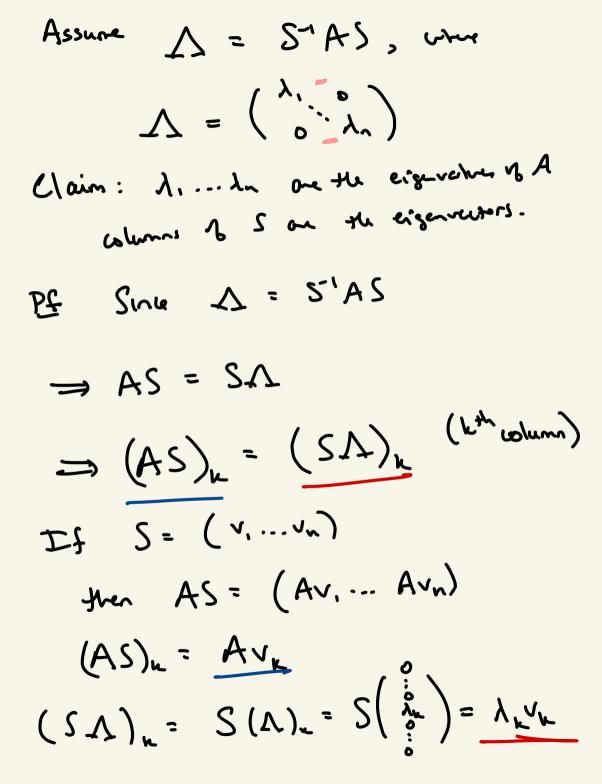


$$E_{X} \quad A = \begin{pmatrix} 31 \\ 13 \end{pmatrix} \text{ is diagnalizable} \\ \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} -11 \\ 11 \end{pmatrix}^{-1} \begin{pmatrix} 31 \\ 13 \end{pmatrix} \begin{pmatrix} -11 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} -11 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} -11 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} -11 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} -11 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} -11 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} -11 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 3 \end{pmatrix} \\ \begin{pmatrix}$$

In general the way to diagonalie a
matrix is to charge basis to
basis do eigenvectors, should
one exist!
$$\frac{E_x}{A} = \begin{pmatrix} 11\\ 01 \end{pmatrix} \text{ is not Oliasonalie able}$$
$$\frac{F_x}{A} = \begin{pmatrix} 11\\ 01 \end{pmatrix} \text{ is not Oliasonalie able}$$
$$\frac{F_x}{A} = \begin{pmatrix} 11\\ 01 \end{pmatrix} \text{ is not Oliasonalie able}$$
$$\frac{F_x}{A} = \begin{pmatrix} 11\\ 01 \end{pmatrix} \text{ is not Oliasonalie able}$$
$$\frac{F_x}{A} = \begin{pmatrix} 11\\ 01 \end{pmatrix} \text{ is not Oliasonalie able}$$
$$\frac{F_x}{A} = \begin{pmatrix} 11\\ 01 \end{pmatrix} \text{ is not Oliasonalie able}$$
$$\frac{F_x}{A} = \begin{pmatrix} 11\\ 01 \end{pmatrix} \text{ is not Oliasonalie able}$$
$$\frac{F_x}{A} = \begin{pmatrix} 11\\ 01 \end{pmatrix} \text{ observations for Charge to - ho basis to to - ho b$$

Thm A metrix A is deagonalisable
iff the eigenvectors of A form
a basis of Cⁿ.
If
$$\lambda$$
 an real,
you can replace of Rⁿ.
Pt: Assume we have eigenvectors
 $\lambda_{1} - \cdots + \lambda_{n}$ and $V_{1} - \cdots + V_{n}$ form
a basis.
Then ($\lambda_{1} - \cdots + \lambda_{n}$) we we much
 $M = (V_{1} - \cdots + V_{n})^{-1} A (V_{1} - \cdots + V_{n})^{-1}$
($\lambda_{1} - \cdots + \lambda_{n}$) is A but in coordinates
 $V_{1} - \cdots + V_{n}$.





$$E_{X} \quad A = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

$$A = 1, \quad \lambda = 1, \quad \lambda = 2$$

$$\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \quad \text{basis } A$$

$$eigenvectors$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & -1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & -1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$(s \quad \text{fix diagonalization }]$$

$$T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \quad \text{Fridig}$$

$$(n \vee ariant \quad \delta \cup \delta \text{spaces} \quad \text{is the scan}$$

$$as \quad \text{friding eigenspaces}.$$

$$T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}.$$

$$Suppose \quad \mathcal{W} = \text{Span}(a, b) \quad \text{is}$$

$$(n \vee ariant.)$$

$$\forall \forall s \in \mathcal{V}, \quad T(w) \in \mathcal{V}.$$

$$w = c(a, b) \in \text{Span}(\frac{a}{b})$$

$$Id \quad T(w) \in \mathcal{W}$$

$$\implies T(c(\frac{a}{b})) = c T(\frac{a}{b})$$

$$\in \text{Span}(\frac{a}{b})$$

$$\implies T(\frac{a}{b}) \in \text{span}(\frac{a}{b})$$

$$= \int T(\frac{a}{b}) \in \text{span}(\frac{a}{b})$$

$$T.$$

$$E_{X} = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \quad V_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \quad \lambda = 1$$

$$V_{2} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \quad \lambda = 1$$

$$V_{3} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad \lambda = 2$$

$$Span \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad is \quad invariant!$$

$$Span \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad is \quad invariant!$$

$$\begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad axis \qquad A \qquad (1) \quad axis \quad (1) \quad axis \quad (1) \quad axis \quad (1) \quad axis \quad (1) \quad (1)$$

When do the engenerators form a
basis
$$\mathcal{L}_{IR}^{n}$$
?
We had enough eigenvectors
when
 $\dim(V_{\lambda}) = alg.mult \mathcal{L}_{\lambda}$
If there are = for λ , then
we have a basis.
If alg mult $k = 1$, aka λ_{i}
are district
the V_{1} -... V_{n} was a basis.
 $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ dim V_{1} c alg mult
 $b \lambda = 1$
Jam as no basis!
diagonalizing!
when is a metric diagonalizable?

The let A be a symmetric real matrix. (a) All eigenvalues of A are real. (b) Eigenrectors to distinct eigenvalues on orthogonal. (c) There is an orthonormal basis of ligennetor, b IR". (d) All synaetric matrices are diagochiecht in R° by on orthogonal matrix. (Just a-c symmanized)

$$J\begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

$$-) T = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$$

$$T = b\begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} + d\begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$$

$$W = span \begin{pmatrix} \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} + \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} \end{pmatrix}$$

$$W = span \begin{pmatrix} \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} + \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} \end{pmatrix}$$

$$dun W = 2$$

$$dun W = 2$$

$$(IR^{n})^{*} = AII linear frown$$

$$IR^{n} \rightarrow VR^{n}$$

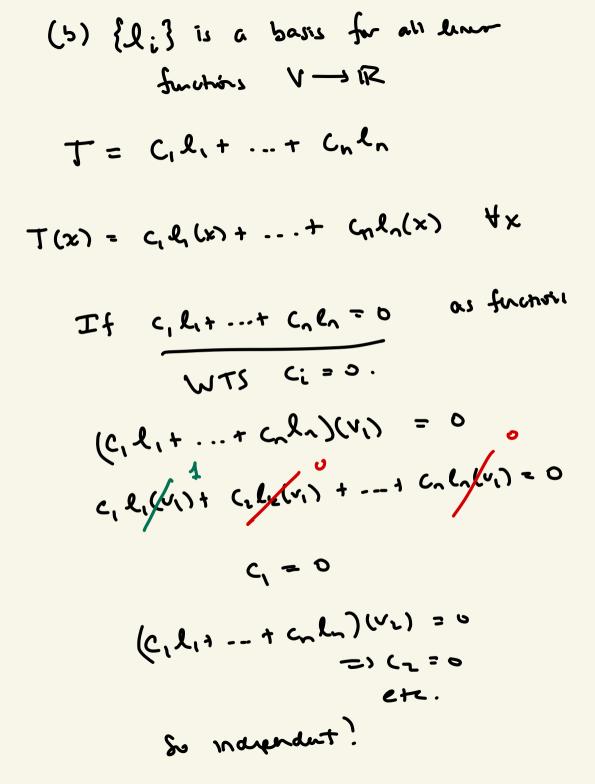
$$= [xn matrix]$$

$$= Ixn matrix$$

$$= NW vector$$

$$Li \qquad row matrix ? row a A^{n}$$

$$\begin{aligned} \mathcal{L}_{i}\left(\vec{x}\right) &= \mathcal{L}_{i}\left(x,e_{1}+\ldots+x_{n}e_{n}\right) \\ &= x,\mathcal{L}_{i}\left(e_{1}\right)+\ldots+x_{n}\mathcal{L}_{i}\left(e_{n}\right) \\ &= x,\mathcal{L}_{i}\left(e_{1}\right)+\ldots+x_{n}\mathcal{L}_{i}\left(e_{n}\right) \\ &= i\mathcal{L}_{i}\left(e_{n}\right) \\ &= i\mathcal{L}_{i}\left(e$$



Span (it
$$T: V \rightarrow iR$$

 $T(V_1) = d_1$
 $T(V_2) = d_2$
 \vdots
 $T(V_3) = d_3$
 $T(V_3) = d_3$
 $T = d_1 l_1 + \dots + d_n l_n$
 $T_2 = d_1 l_1 + \dots + d_n l_n$
 $Gre equal as furthers,$
 $We need to show$
 $T(V) = (d_1 l_1 + \dots + d_n l_n)(V)$ $\forall V \in V.$
 $= d_1 l_1(V) + \dots + d_n l_n)(V)$
If suffices by lower to show that
 $T(V_1) = (d_1 l_1 + \dots + d_n l_n)(V_1)$
 $f(V_1) = (d_1 l_1 + \dots + d_n l_n)(V_1)$
 $f(V_1) = (d_1 l_1 + \dots + d_n l_n)(V_1)$

$$T(v_i) = A_i \quad \text{by aufinition } \times$$

$$(d_i l_i + \dots + d_m l_m)(v_i)$$

$$= d_i l_i (v_i) + \dots + d_i l_i (v_i) + \dots + d_m l_m (v_i)$$

$$= d_i \quad a(v_i)$$

$$T \in Span (l_i - \dots + l_m)$$

$$T = c_i l_i + \dots + c_n l_m \quad where \quad on$$

$$C_i = T(v_i) = d_i$$

$$c_i = T(v_i) = d_i$$

$$c_n = T(v_n) = d_n$$