

Yesterday ...

minimile $p(x) = x^T Kx - 2x^T f + c$ K pos auf. $\chi^* = K^{-1} f$ $p(x^*) = c - f^T x^*$

Minimize $||w-b||^2$, where $w \in W = a$ $subspace \leq R^n$. $and b \in R^n$ Two ways to fism out $Min \{ ||w-b||^2 ||w + W \}$. $w = \chi_1 w_1 + \dots + \chi_k w_k = w_1 \dots + w_k = basis$ $solve \leq x_1 \dots + x_k = w_1 \dots + w_k = basis$ $Solve \leq x_1 \dots + x_k = w_k = basis$ $Solve \leq x_1 \dots + x_k = w_k = basis$

Let
$$W \leq R^{n}$$
 be a subspace,
 $b \in R^{n}$. minimize $\|w-b\|^{2}$.
Suppose $W_{1} - -W_{R}$ is a basis of W .
 $A = (W_{1} - -W_{R})$. The we
know theat $\operatorname{Img}(A) = \operatorname{Span}(W_{1} - -W_{R})$
 $= W$.
On the obtonether
 $\operatorname{Img}(A) = \{A_{\mathcal{I}} \mid x \in R^{n}\}.$
 $\operatorname{Min}\{\|w-b\|^{2} \mid w \in W\}$
 $= \operatorname{Min}\{\|Ax - b\|^{2} \mid x \in R^{n}\}.$
 $Ax - b\|^{2} = (Ax - b) - (Ax - b)$
 $= (Ax - b)^{T}(Ax - b)$

$$(A \times -b)^{T} (A \times -b)$$

$$= ((A \times)^{T} - b^{T})(A \times -b)$$

$$= (X^{T}A^{T} - b^{T})(A \times -b)$$

$$= x^{T}A^{T}A \times -b^{T}A \times -x^{T}A^{T}b$$

$$+ b^{T}b$$

$$= x^{T}A^{T}A \times -b^{T}A \times -x^{T}A^{T}b$$

$$+ b^{T}b$$

$$= x^{T}A^{T}A \times -b^{T}A \times -x^{T}A^{T}b$$

$$+ b^{T}b$$

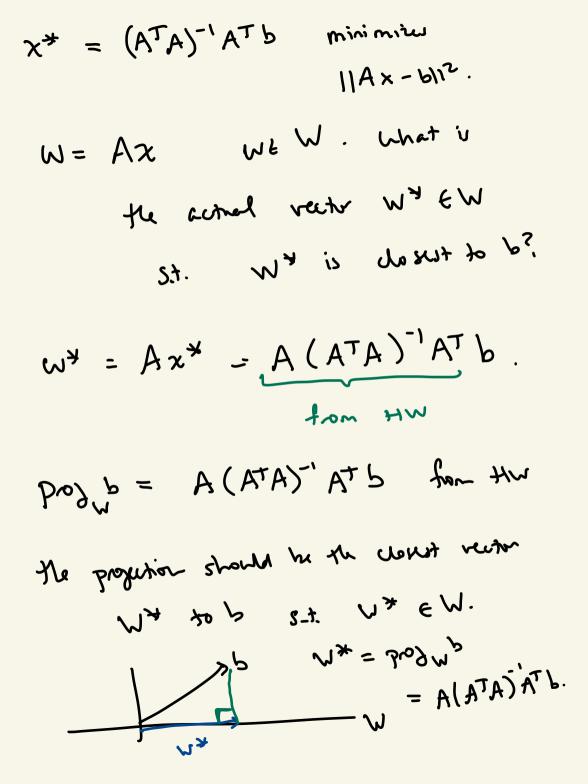
$$= x^{T}K \times -2x^{T}f + 1b^{T}c$$

$$K = A^{T}A$$

$$gram matrix fr w_{1} \dots w_{k}$$

$$Side Calculation$$

Claim;
$$b^{T}Ax = x^{T}A^{T}b$$
.
Pf $b^{T}Ax \in \mathbb{R}^{1}$
So $(b^{T}Ax) = (b^{T}Ax)^{T}$ trivially
 $b^{T}Ax = (b^{T}Ax)^{T}$ trivially



$$E_{X} = Span \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(loxist distrue from b to W?$$

$$(Jnice vector WY \in W is closed)$$

$$(Jnice vector WY \in W is closed)$$

$$(Jnice Vector WY = A (ATA)^{-1} AT b$$

$$(WY = A (ATA)^{-1} AT b$$

$$(WW A = \begin{pmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$ATA = \begin{pmatrix} 0 & -1 \\ -1 & 5 \end{pmatrix}, (ATA)^{-1} = \frac{1}{25} \begin{pmatrix} 5 & 1 \\ 1 & 6 \end{pmatrix}$$

$$(WY = \begin{pmatrix} 1 & 0 \\ -1 & 5 \end{pmatrix}, \frac{1}{25} \begin{pmatrix} 5 & 1 \\ 1 & 6 \end{pmatrix}, \begin{pmatrix} 1 & 2 & -10 \\ 0 & 0 & 12 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$= \frac{1}{29} \begin{pmatrix} 5 \\ -4 \\ 2 \end{pmatrix}$$
is closest + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}

$$d = || W^{4} - 5||$$

$$= \sqrt{||b||^{2} - f^{T} z^{4}} = \frac{1}{2q} (2\sqrt{2744})$$
is the minimal distruction

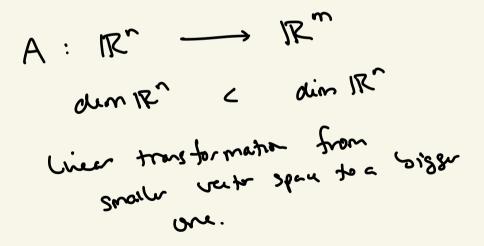
$$b = \begin{pmatrix} 1 \\ 0 \end{pmatrix} to W = Span \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

$$(A^{T}A)^{T}A^{T} matrix helps computation
quite micely.$$

5.4 least squares
Def lef
$$Ax = b$$
 be a suptom a
equation. $b \mod \sigma$ not be
 $m \mod(A)$.
Then the vector x^{4} which minimizes
the distance $\|Ax - b\|^{2}$ is called
the least squares solution to $Ax = b$.
(ething $W = \log(A)$. Find x^{4}
 $by = \chi^{4} = (A^{T}A)^{-1}A^{T}x$
any matrix A may not have
indegendent columns
 $(A^{T}A)^{-1}$ might hol exist.

let A be a man matrix. When is ATA provide? If the Glumos of A are independent K = ATA = Cran matrix 2 In agendant vectors -) always positive definite >> K=(ATA)⁻¹ invertible. When are columns of A independent? Columns one independent (A) = N. (every colum has a pivot) If n<m. (>) lur(A) = 0.

A max (which is want to de
least squares to)
$$\chi^{\pm} = (A^T A)^{-1} A^T b$$
, $(A^T A)^{-1}$ needs
to exist.



$$A : IR^{n} \longrightarrow IR^{m}$$

$$dum IR^{n} \subset dim IR^{n}$$
Uneer transformation from smaller vector spece to a bigger one.
If $kr(A) = 0$. Claim:

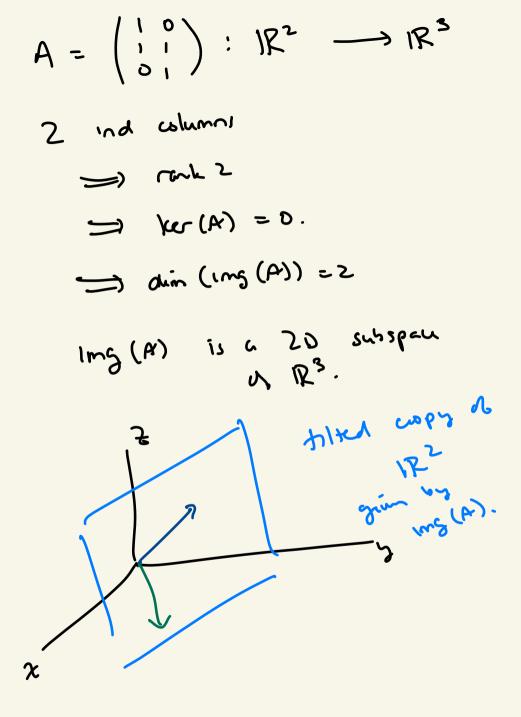
$$dum (Img(A)) = n$$

$$I$$

$$I$$

$$rank(A)$$
Since $dum (Img(A)) = n$

$$Ing(A) \leq IR^{m} m>n$$
we can think $b Img(A)$ just as a copy $f IR^{n}$ but tilted
out struck inside $b IR^{n}$
Somehor.



$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} : IR^{2} \longrightarrow IR^{3} \quad Square
Mathematical
(ATA)'AT dan 4 have
(ATA)'AT b is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word instead
 $\chi^{\pm} = (ATA)'A^{T} b$ is word inste$$

Anoth way to think abour x?
is it's closest variable to being
a solution to Ax = b.
If Ax=5 has a could solution
If $Ax = 5$ vias ax 2, then $z = x^{*}$. Ax = b = 0
Since $d = Ax - b = 0$ min $s = x^2 = 2$.
Note: If kr (A) ≠ 0, the three
Solution! Ke - (11 1) 1. 12 makes no surse
If ZElar(A). Xt is a least Squares solution
the W= x* + z is also a leaver square solution.

Ex:

$$\begin{pmatrix} 120\\ 3-11\\ 1-2 \end{pmatrix} \begin{pmatrix} x\\ 3\\ 2 \end{pmatrix} = \begin{pmatrix} 1\\ 0\\ -1\\ 2\\ 2 \end{pmatrix}$$

 $21-1 \end{pmatrix} \begin{pmatrix} x\\ 3\\ 2\\ 2 \end{pmatrix} = \begin{pmatrix} 1\\ 0\\ -1\\ 2\\ 2\\ 2 \end{pmatrix}$
 $1 \end{pmatrix}$
 $1 \end{pmatrix}$
 $X \qquad 5$
 $A \qquad 5 \times 3 \text{ matrix}.$
Tell by now reduction
 $Tell by now reduction$
 $Tell by now reduction
 $Tell by now reduction$
 $I \qquad 10 \text{ matrix}.$
 $Tell by now reduction
 $I \qquad 10 \text{ matrix}.$
 $Tell by now reduction
 $I \qquad 10 \text{ matrix}.$
 $Tell by now reduction
 $I \qquad 10 \text{ matrix}.$
 $I \qquad 10 \text{ matrix}.$$$$$

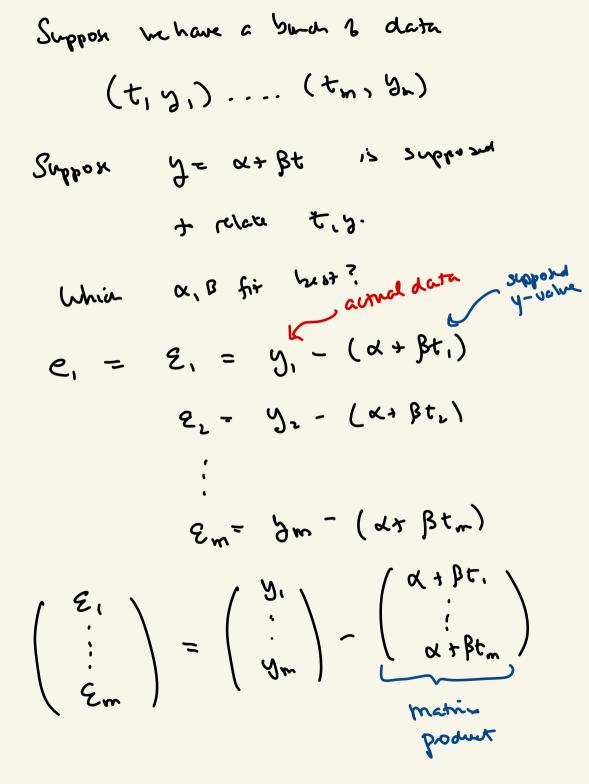
$$\chi^{*} = (A^{T}A)^{-1}A^{T}b.$$

$$M = A^{T}A = \begin{pmatrix} 16 & -2 & -2 \\ -2 & 11 & 2 \\ -2 & 2 & 7 \end{pmatrix} \qquad Uonst$$

$$f = A^{T}b = \begin{pmatrix} 8 \\ 0 \\ -7 \end{pmatrix} \qquad Uonst$$

$$\chi^{*} = K^{-1}f = (A^{T}A)^{-1}A^{T}b \qquad (0.4 \text{ IIG}) \\ -58 \\ = 55b \quad (674) \qquad = \begin{pmatrix} 0.4 \text{ IIG} \\ .2482 \\ -9532 \end{pmatrix}$$

$$Gallowlear \dots$$



E-y-Ax. X, B fit but when Z ε²_i is minimal. (lecst squares) $\sum \epsilon_i^2 = ||\epsilon||^2 = ||y - Ax||^2$ we know how to This

 $\chi = \begin{pmatrix} \chi \\ \beta \end{pmatrix} = (A^T A)^T A^T Y$ $A^{T}A = \begin{pmatrix} 11 & \cdots & 1 \\ t_{1}t_{2} & \cdots & t_{m} \end{pmatrix} \begin{pmatrix} 1 & t_{1} \\ 1 & t_{2} \\ \vdots & \vdots \\ 1 & t_{m} \end{pmatrix}$ $= \begin{pmatrix} m & \Sigma t_i \\ \Sigma t_i & \Sigma t_i^2 \end{pmatrix}$ $(A^{T}A)^{T} = m \overline{z}t_{i}^{2} - (z_{i})^{2} - z_{i}t_{i} - z_{i}t_{i}$

$$\frac{A^{T}y}{=} \begin{pmatrix} 11 & \dots & 1 \\ t_{1}t_{1} & \dots & t_{m} \end{pmatrix} \begin{pmatrix} y_{1} \\ \vdots \\ y_{m} \end{pmatrix}$$
$$= \begin{pmatrix} \Sigma y_{1} \\ \overline{\Sigma} y_{1} \\ \overline{\Sigma} t_{1}y_{1} \end{pmatrix}$$

$$\begin{split} y &= \alpha + \beta t \\ \begin{pmatrix} \kappa \\ \beta \end{pmatrix} &= (A^{T}A)^{T} A^{T}y \\ &= \int_{m(\Xi^{t}z^{2})} - (\Xi^{t}z)^{T} \begin{pmatrix} \Xi^{t}z^{2} - \Xi^{t}z \\ -\Xi^{t}z \end{pmatrix} \\ &= \begin{pmatrix} \Xi^{t}z^{2} \end{pmatrix} - (\Xi^{t}z)^{T} \begin{pmatrix} \Xi^{t}z^{2} \\ \Xi^{t}z^{2} \end{pmatrix} \\ &= \begin{pmatrix} \Xi^{t}z^{2} \\ -\Xi^{t}z^{2} \end{pmatrix} \\ &= \begin{pmatrix} (\Xi^{t}z^{2})^{T} - (\Xi^{t}z)^{T} \\ -(\Xi^{t}z)^{T} (\Xi^{t}z^{2})^{T} - (\Xi^{t}z^{2})^{T} \end{pmatrix} \\ &= \int_{m(\Xi^{t}z^{2})^{T}} (\Xi^{t}z^{2}) \int_{m(\Xi^{t}z^{2})} (\Xi^{t}z^{2}) \int_{m(\Xi^{t}z^{2})} (\Xi^{t}z^{2}) \\ &= \int_{m(\Xi^{t}z^{2})^{T}} (\Xi^{t}z^{2}) \int_{m(\Xi^{t}z^{2})} (\Xi^{t}z^{2}) \int_{m(\Xi^{t}z^{2})} (\Xi^{t}z^{2}) \\ &= \int_{m(\Xi^{t}z^{2})^{T}} (\Xi^{t}z^{2}) \int_{m(\Xi^{t}z^{2})} (\Xi^{t}z^{2}) \\ &= \int_{m(\Xi^{t}z^{2})^{T}} (\Xi^{t}z^{2}) \\ &= \int_{m(\Xi^{t}z^$$

Ex:

$$\frac{t}{y} \stackrel{o}{=} \stackrel{i}{=} \stackrel{3}{=} \stackrel{o}{=} \stackrel{i}{=} \stackrel{i}{=}$$

Some method for any polynomial fir!

$$(t_1, y_1) - ... (t_m y_m)$$

$$y = \alpha_0 + \alpha_1 t_1^1 + ... + \alpha_n t_n^n$$

$$z_i = y_i - (\alpha_0 + \alpha_1 t_1^1 + ... + \alpha_n t_n^n)$$

$$z = y - A(\binom{\alpha_0}{u_n})$$

$$A = \begin{pmatrix} 1 & t_1 & t_1^2 & ... & t_n^n \\ 1 & t_n & t_n^2 & ... & t_n^n \end{pmatrix}$$

$$k_i \cdot y_i \cdot y_i$$

$$A = \begin{pmatrix} 1 & t_1 & \cdots & t_n \\ 1 & \vdots & \vdots \\ 1 & t_n & \cdots & t_n \end{pmatrix}$$

is called a Vandermonde matrix.

$$A \quad is \quad a \quad Square matrix uhen
$$M = n \times 1.$$

$$A = \begin{pmatrix} 1 & t_1 & \cdots & t_n \\ 1 & t_n & \cdots & t_n \\ 1 & t_n & \cdots & t_{n+1} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & t_1 & \cdots & t_n \\ \vdots & \vdots & \vdots \\ 1 & t_n & \cdots & t_{n+1} \end{pmatrix}$$

$$T_{A} = \begin{pmatrix} 1 & t_1 & \cdots & t_n \\ \vdots & \vdots & \vdots \\ 1 & t_n & \cdots & t_{n+1} \end{pmatrix}$$

$$T_{A} = \begin{pmatrix} 1 & t_1 & \cdots & t_n \\ \vdots & \vdots & \vdots \\ 1 & t_n & \cdots & t_{n+1} \end{pmatrix}$$

$$T_{A} = \begin{pmatrix} 1 & t_1 & \cdots & t_n \\ \vdots & \vdots & \vdots \\ 1 & t_n & \cdots & t_{n+1} \end{pmatrix}$$

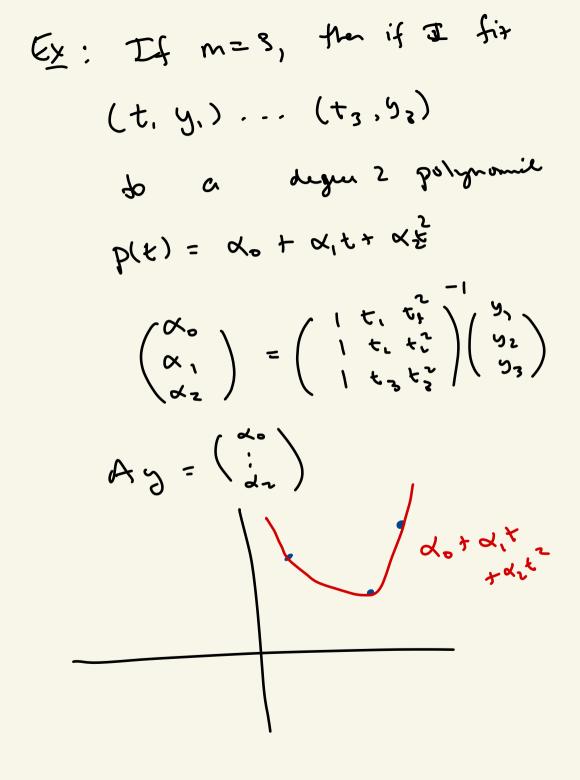
$$T_{A} = \begin{pmatrix} 1 & t_1 & \cdots & t_n \\ \vdots & \vdots & \vdots \\ 1 & t_n & \cdots & t_{n+1} \end{pmatrix}$$

$$T_{A} = \begin{pmatrix} 1 & t_1 & \cdots & t_n \\ \vdots & \vdots & \vdots \\ 1 & t_n & \cdots & t_{n+1} \end{pmatrix}$$

$$T_{A} = \begin{pmatrix} 1 & t_1 & \cdots & t_n \\ 1 & t_n & \cdots & t_{n+1} \end{pmatrix}$$

$$T_{A} = \begin{pmatrix} 1 & t_1 & \cdots & t_n \\ 1 & t_n & \cdots & t_{n+1} \end{pmatrix}$$

$$T_{A} = \begin{pmatrix} A^{-1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ T_{A} = \begin{pmatrix} A^{-1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ T_{A} = \begin{pmatrix} A^{-1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1} & e_{X_1} & e_{X_1} & x_1 & \cdots & x_{n+1} \\ e_{X_1}$$$$



Remember: A men
$$n \ge m$$

 $A: IR^n \longrightarrow IR^m$
Shives IR^n unside $b IR^m$
 m some way
 $(ATA)^1 AT: IR^m \longrightarrow IR^n$
huit way to go backwords.
 8.7 Singular Values
 $Take A, rank(n), nxm.$
 $kr(A) = 0, n$ independent
 $rainmetric$
Eigenvalues of ATA , $\lambda_i > 0$

Def: Curn a matrix A,
The singular values
$$\beta$$
 A and $\sigma_i = J_{ii}$
 λ_i is a eigenvalue β K = ATA.
We don't A to κ mL(A) = n.
 I_i rowk(A) < n.
 $K = ATA$ is positive semi-adjuite
 $\lambda_1 \dots \Lambda_r > 0 \longrightarrow \sigma_i = J_{ii}$
 $\lambda_{r+1} \dots \Lambda_n = 0$.
Ex: $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
 $= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

$$\begin{array}{l}
\chi = \begin{pmatrix} 1 & i & 0 \\ i & 2 & i \\ 0 & 1 & i \end{pmatrix} \\
\xrightarrow{} \lambda = 0 \\
\chi = 1 \quad \nabla_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\chi = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \\
\xrightarrow{} \lambda = 3 \quad \nabla_3 = \begin{pmatrix} -1 \\ 0 \\ 1$$

Singular Value Decomposition :
The let A be men, w singular
values
$$\sigma_{i} \dots \sigma_{r}$$
 rank $(A) = r$.
The P ΣQ^{T} Σ reference $Q = r \times n$
 $A = P \Sigma Q^{T}$ Σ reference $Q = r \times n$
where the columns $b Q$
where the columns $b Q$
 σ_{r} orthonormal eigenvectors
 $\sigma_{r} A^{T}A$ for $\lambda_{i} = \sigma_{i}^{2}$.
 $\Sigma = \begin{pmatrix} \sigma_{i} \\ \sigma_{r} \end{pmatrix}$
 P has ermormal columns γ_{rr}
 $P_{i} = \frac{A}{\sigma_{i}}$.

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = P \cdot Z A^{T}$$

$$A^{T}A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$U_{1} = I \quad \sigma_{2} = J3$$

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \qquad \int \\ \int \\ J \qquad J \qquad J \qquad J \qquad J \qquad J \qquad J$$

$$U_{1} = J_{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \qquad U_{1} = J_{2} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$Q = \begin{pmatrix} T_{1}T_{1} & T_{2}T_{2} \\ 0 & T_{2}T_{2} \\ T_{2}T_{2} & T_{2}T_{2} \\ T_{2} & T_{2}T_{2} \\ T_{2} & T_{2} \\ T_{2} & T_$$

let A = PZQT almost $A^{-1} = (P \leq Q^T)^{-1}$ ="(QT)" 2" 7" "=" QZ1P" $A^{-1} = Q \begin{pmatrix} \frac{1}{\sigma_1} & \frac{1}{\sigma_2} \end{pmatrix} P^T$ Def Cur any matrix A, $m \times n$, $A = P \leq Q T$, per the pseudointern is $A^{\dagger} = Q \Sigma^{T} P^{T}$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \int_{T_{2}}^{1} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ A^{+} & = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac$$