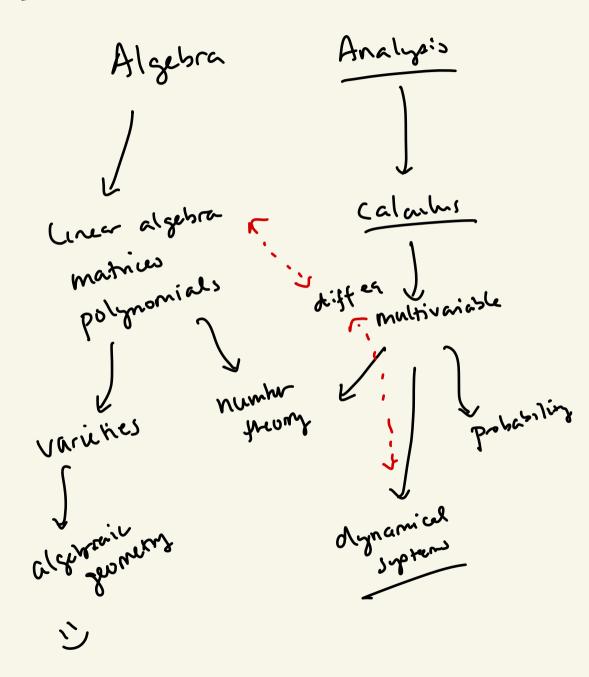
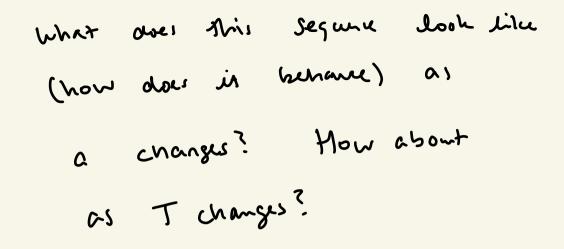


\$ 9.1

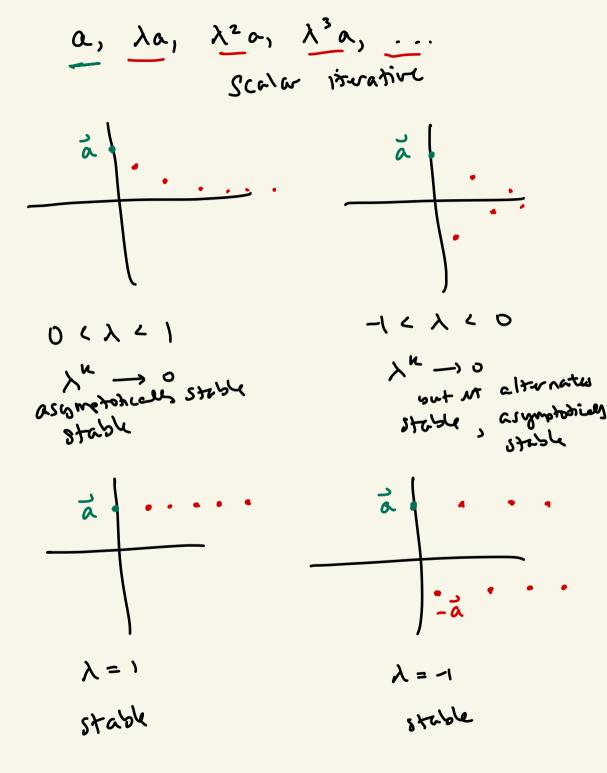


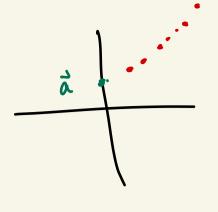
Linear iterative system
(now an initial vector
$$u^{(0)} = a$$

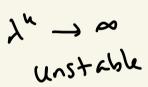
 $u^{(k+1)} = T u^{(k)}$
 $u^{(k)} \in \mathbb{R}^{n}$ $T \in M_{n\times n}(\mathbb{R})$
 $u^{(0)} = a$
 $u^{(1)} = T u^{(0)} = T a$
 $u^{(1)} = T u^{(0)} = T a$
 $u^{(1)} = T u^{(1)} = T (T a) = T^{2} a$
 \vdots
 $u^{(k)} = T^{k} a$
 $a, Ta, T^{2} a, T^{3} c, \dots$

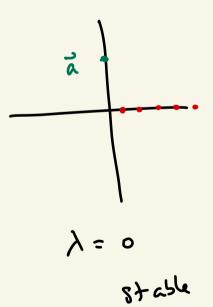


丁= λI. let Tha $= T^{k} u^{(\delta)} =$ () () = $(\lambda I)^{h} a = \lambda^{k} a$ α , $\lambda \alpha$, $\lambda^2 \alpha$, $\lambda^3 \alpha$, $\lambda^4 \alpha$, ... what happens for diffuent 1 values?











入く-1

unst able

What	ίţ	T	is a	mere	A. fri wilt
masin	2				
	say n			U (o)	دا
0~~	ligereet	nor for	T,		
μω,) U	(ฟ ัง	(3) U	
not	ι		()		
usvalls Weige-verter	Tu ⁽⁰⁾)			
u (o)	, Xn,			, λ ³ μ ^{(d}	
50-	me Cs	R	Scal	ar iter	chire
	ولمر	yen!			

The lef
$$u^{(lin)} = Ju^{(lo)}, u^{(l)} = a$$

be a line iterative system.
If J is diagonalizable, i.e. has
a basis b eigenvectors
 $v_{1} - ... v_{n}$ $(\lambda_{1} ... \lambda_{n})$
yhe $Cxpluit$
 $u^{(le)} = c_{1}\lambda_{1}^{le}v_{1} + ... + c_{n}\lambda_{n}^{le}v_{n}$
 $u_{ne} \quad a = c_{1}v_{1} + ... + c_{n}v_{n}$.
 $u_{ne} \quad a = c_{1}v_{1} + ... + c_{n}v_{n}$.

$$p_{f} = u^{(kn)} = Tu^{(k)}, u^{(k)} = a$$

$$u^{(k)} = T^{k} u^{(0)} = T^{k} a$$

$$corpute this
nor explicitly
$$\lambda_{1} \dots \lambda_{n} \quad u_{1} \quad a \quad basis \quad b$$

$$eigenvectors \quad v_{1} \dots v_{n} \quad v_{n} \quad T.$$

$$Srue \quad they \quad term \quad c \quad basis,$$

$$a \in Span(v_{1}, \dots v_{n}).$$

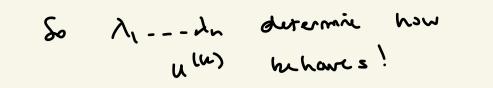
$$let \quad a = C_{1}v_{1} + \dots + C_{n}v_{n}.$$

$$u_{n} + u_{n} = Ta$$

$$= T(c_{1}v_{1} + \dots + c_{n}v_{n})$$$$

$$\begin{aligned} u^{(u)} &= Ta \\ &= T \left(c_1 v_1 + \dots + c_n v_n \right) \\ &= c_1 T v_1 + \dots + c_n T v_n \\ &= c_1 \lambda_1 v_1 + \dots + c_n \lambda_n v_n \\ &= c_1 \lambda_1 v_1 + \dots + c_n \lambda_n v_n \\ &= T \left(c_1 \lambda_1 v_1 + \dots + c_n \lambda_n v_n \right) \\ &= c_1 \lambda_1 T v_1 + \dots + c_n \lambda_n T v_n \\ &= c_1 \lambda_1^2 v_1 + \dots + c_n \lambda_n^2 v_n \\ &\text{Tr general} \\ u^{(u)} &= c_1 \lambda_1^{u} v_1 + \dots + c_n \lambda_n^{u} v_n . \end{aligned}$$

IJ



$$E_{X}$$

$$u^{(0)} = \begin{pmatrix} a \\ b \end{pmatrix} \quad T = \begin{pmatrix} 0.6 & 0.2 \\ 0.2 & 0.6 \end{pmatrix}$$

$$u^{(h+1)} = T u^{(h)}$$

$$u^{(h)} = \begin{pmatrix} 0.6 & 0.2 \\ 0.2 & 0.6 \end{pmatrix}^{k} \begin{pmatrix} a \\ b \end{pmatrix}$$

$$u^{(h)} = \begin{pmatrix} 0.6 & 0.2 \\ 0.2 & 0.6 \end{pmatrix}^{k} \begin{pmatrix} a \\ b \end{pmatrix}$$

$$u^{hat's} = \int u^{(h)} \int dt = \int dt \begin{pmatrix} 0.6 & 0.2 \\ 0.2 & 0.6 \end{pmatrix}^{k} dt$$

$$u^{hat's} = \int u^{(h)} \int dt = \int dt \begin{pmatrix} 0.6 - \lambda & 0.2 \\ 0.2 & 0.6 \end{pmatrix}^{k} dt$$

$$dut T = \lambda T = du \begin{pmatrix} 0.6 - \lambda & 0.2 \\ 0.2 & 0.6 - \lambda \end{pmatrix} = 0$$

$$(-1)$$

$$\lambda_1 = 0.4 \qquad \gamma_1 = \binom{1}{1}$$
$$\lambda_2 = 0.8 \qquad \gamma_2 = \binom{1}{1}$$

$$\lambda_{1} = 0.4 \qquad \gamma_{1} = \binom{-1}{1}$$

$$\lambda_{2} = 0.8 \qquad \gamma_{2} = \binom{1}{1}$$

$$\mu^{(W)} = \binom{0.4}{0.2} \binom{0.4}{0.2} \binom{-1}{1} + C_{2} (0.5)^{k} \binom{1}{2}$$

$$= C_{1} \binom{0.4}{1} \binom{-1}{1} + C_{2} \binom{0.5}{1} \binom{1}{1}$$

$$\binom{a}{5} = C_{1} \binom{-1}{1} + C_{2} \binom{1}{1}.$$

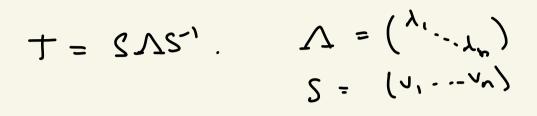
$$\binom{a}{5} = \binom{-1}{1} \binom{-1}{1} \binom{C_{1}}{C_{2}}$$

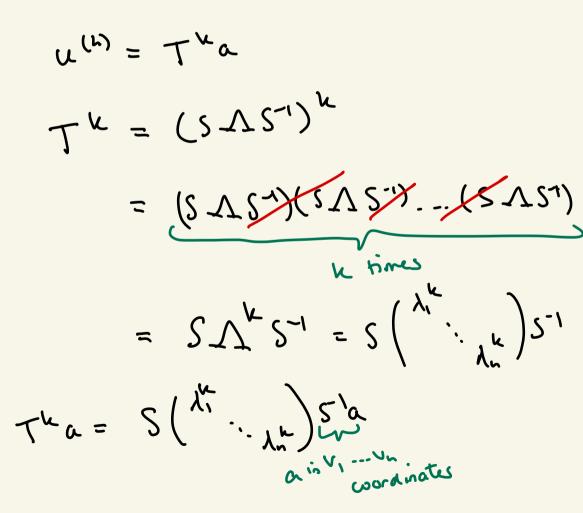
$$\binom{a}{1} = \binom{-1}{1} \binom{1}{1} \binom{C_{1}}{C_{2}}$$

$$= \frac{1}{2} \binom{-1}{1} \binom{1}{1} \binom{a}{5}$$

$$= \frac{1}{2} \binom{-1}{1} \binom{a}{5}$$

$$= \frac{1}{2} \binom{-1}{1} \binom{a}{5}$$





$$T^{k} \alpha = S \begin{pmatrix} \lambda_{1}^{k} & \dots & \lambda_{n}^{k} \end{pmatrix} \begin{pmatrix} c_{1} \\ \vdots \\ c_{n} \end{pmatrix}$$
$$= G \lambda^{k} v_{1} + \dots + c_{n} \lambda^{k} v_{n}.$$
Same as before.

$$f_{kr2} = f_{kr1} + f_{k} / f_{0} = 1, f_{1} = 1.$$

1,1,2,3,5,8,13,21,34,...

$$f^{(k)} = \begin{pmatrix} f_k \\ f_{kn} \end{pmatrix}$$

$$f^{(l_{k})} = \begin{pmatrix} f_{k} \\ f_{kn} \end{pmatrix}_{j}^{k}$$

$$f^{(l_{k}n)} = \begin{pmatrix} f_{kn} \\ f_{knn} \end{pmatrix}_{j}^{k} = \begin{pmatrix} f_{kn} \\ f_{knn} \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} f_{knn} \\ f_{knn} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} f^{(k)}$$

$$f^{(l_{k})} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} f_{kn} \\ f_{knn} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} f^{(k)}$$

$$T = \begin{pmatrix} 0 \\ 1 \end{pmatrix} , f^{(l_{k})} = \begin{pmatrix} f_{kn} \\ f_{knn} \end{pmatrix}$$

$$f^{(l_{k})} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} k \begin{pmatrix} 1 \\ 1 \end{pmatrix} .$$

$$I_{n} H \cup T = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$T = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow T = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Diagonalise
$$T = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 and
calculate $\begin{pmatrix} 0 \\ 1 \end{pmatrix}^{k}$ to get
a explicit formule for the.

Continue tomanou. ...