

Last time ... - If T is a matrix, and out Cigarvalues di har /21/41, the Th -> 0 (ull) -> 0. If I has one rightalue >> I of no reports fre uth -> u* where ut is a freed point of T. the 11T1100 2 max absolute <1 >> Th →0. mh uly -10.

The converse of this result is

not true!

$$T = \begin{pmatrix} 1 & -\frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix}$$

We show that
$$T^k \rightarrow 0$$

We show 0.1 0.

but
$$||T||_{\alpha} = \max \left\{ \begin{array}{c} |+\frac{1}{3} + 2| = \frac{10}{3} \\ \frac{2}{3} \\ \end{array} \right\}$$

$$= 10/3 71.$$

If ITII as I we have nothing about how The behaves.

& G.3 Markon Prouses

Word Problem!

Suppose if today is snowing, tomorow has a 70% chance of also snowing.

But if thee's no snow, there's an 80% change there's no snow is snowing, tomorrow. If today is snowing, what's the possibility of it snowing in 7 days?

We can turn this into a linear interative septem?

 $\mathcal{N}_{(\mathbf{F})} = \begin{pmatrix} \mathcal{N}_{(\mathbf{F})} \\ \mathcal{L}_{(\mathbf{F})} \end{pmatrix}$

.. no snow or kith day.

+ U.8n(k)

= Tull

snows or kinday.

5 (16) + n(100) = 1

S (k+1) = 0.7 s (h)

0.35^(k)

(ker) = (s(ker)) = (0.7 0.2)(s(k))

$$U(k+1) = \begin{pmatrix} s(k+1) \\ n(k+1) \end{pmatrix} = \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix} \begin{pmatrix} s(k) \\ n(k) \end{pmatrix}$$

$$0.7 + 0.7 & 0.2 \\ + 0.7 = 1 \\ -1 & -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U(k+1) = \begin{pmatrix} s(k) \\ -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$U($$

$$(0) = (0) \quad \text{Shu ix's}$$

$$(7) \quad -7 \quad (6) \quad (7)$$

 $u^{(7)} = T^{7}u^{(0)} = \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix}^{7} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

in & dup!

u(h) or k-, so envotes Limit average probabilities of Snow or No snow,

As $k \rightarrow \infty$ which $\longrightarrow \begin{pmatrix} 0.4 \\ 0.6 \end{pmatrix}$ So on average 40°lo of the days mon in this model. Theory behind this model. Def A rector $u = (u_1, u_2, ..., u_n)$ is a probability rector such that 1 7, Ui 7, 0 and u, + u2+ ... + un=1. For example $U = \begin{pmatrix} 0.4 \\ 0.6 \end{pmatrix}$ is a prob. vector. $u_1 + u_2 + u_3 = 1$ n = (1,111)Side note: ULTULE 1 1- simplex 2-simplex (x-3=1)

Det: A matrix T is a transition matrix if 17 tis 30 and $\sum_{i=1}^{n}$ tij = 1 (blumni add $\neq 1$). $T = \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix}$ probability of It snowed today If w(lk) is a probability vector and I is a transition matrix, then u(uti) = Trus is also a

probability vector.

a transition matrix tigno iff (11..1) T = (11...1). (1,1,1...1). (un) = (11...1) (Tulus) (11.-.1) T w(m) (11...) u(le) (k+1) is a probability rector.

Pf: U(k) is a part rector

(1,1, ..1) · u(h) = 1

iff u(4) >0

Def We say T is a regular travilin matrix if there is some integer in >0 such that I'm has all strictly positive $Ex T = \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix}$ is regular $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} f(x) dx = \int_{$ Ex T= (10) not regular. X Thm If T is a regular travision matrix. The T has a Eigenvalur N=1 which has no repeats and a unique polability eigeneuror u^{+} for $\lambda = 1$. (ux represents averge probabilities

(ux is a free point, stary)

freedpoint

Crue a probability vector
$$u(0)$$
 $u(10) \rightarrow u^{2}$ as $k \rightarrow \infty$.

Crue a regular transition matrix,

the arrest probability vector

 u^{2} always u^{2} u^{2} u^{2} .

 v^{2} u^{2} u^{2} u^{2}
 v^{2} u^{2} u^{2}
 v^{2} u^{2} u^{2}
 v^{2} u^{2} u^{2} u^{2}
 v^{2} u^{2} u^{2} u^{2} u^{2}
 v^{2} u^{2} u^{2}

Ex A taxi company (n'desnae) rus in the twin whies base poorer in Wels ---> 10°6 St park _____ 360/a Suburbs Board in St paul -> 30% Np/>

=> 3000 Supmps

30% St Pony

Where are the taxis on average?

T is a regular transition matrix
$$t_{ij} > 0$$
 $\frac{3}{2}t_{ij} = 1$

$$U^{*} = \frac{1}{\frac{11}{7} + \frac{10}{2} + 1} \begin{pmatrix} \frac{11}{7} \\ \frac{10}{7} \\ \frac{10}{7} \end{pmatrix} = \begin{pmatrix} 0.47 & ... \\ 0.22 & ... \\ 0.3... \end{pmatrix}$$
and any angles of the state of th