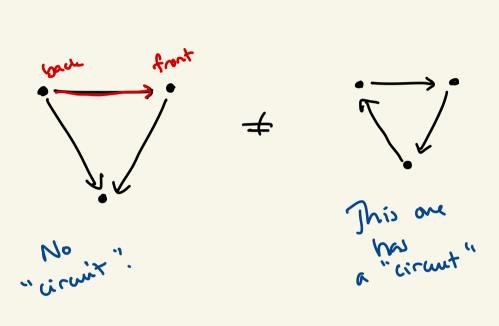


- . Last day & new material for the course.
- HW 13 due tonight
- Final Exam Friday 7/31
 10:10am- 12:10pm + 15 min
 to submit?

A graph is a collection of vertices and edges, vanus are dats while edges on . سنه 4 ratio 4 enges Why is this graph? you can instif the for reside to su that fu graph Digraph, directed graph.

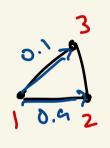
then, the edges are "duruted". We draw them as arrows.



Pules	
(1) Graphs	one finite.
(10	no infinite number of eages)
	a of edays
(2) Crosph	on digraphs hour of houps or multi-edges

Associated are two

· adjacency matrix, matrix & O's 1's which hed an edge between them or not!



$$A_{adj} = \frac{1}{3} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

my T for a random Markon the graph when

$$T = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$
We arrive for the choice graph.

Consider the adjacency marrie A ob a gran G. (A); i the # of paths of byth k from vertex i to versex 3. Az means por o leger 2 or chain of 2 eages $A^{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Adjourn - propability * . CS

Marrix . Incidence

distances

Det Grun a directed G th In cidnu matrix associated to G is a mxn mostrix where m= # 16 evens N= # & respire of G (For every vertex there's a column) il by i oner house ? (A inc) = I if edge i starts at ventur j -) of ease i ends at ventex j Cosine of company of

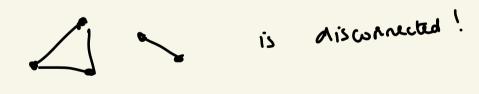
$$\frac{Ex}{31} = \frac{12}{23} = \frac{3}{3} \text{ runius}$$

$$\frac{12}{31} = \frac{2}{3} = \frac{3}{3} = \frac{3}{3}$$

$$\begin{cases} 2 & 2 & 3 & 4 \\ 2 & 3 & 4 \\ 3 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 & 4 \\ 6 & 1 & 1 & 0 & 0$$

Def A graph (disraph) is connected it every pair of versions can be connected by a series of eased (also path).

Yesterday, Traslation matries for rondom walks on connected graphs are regular.



If A is on incidure massive bab for a cometed digreph $kr(A) = Span \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$. Men

Pf: Suppose & Eler (A).

let 2 = (2,, 2,,..., tn).

We want to prove that

えって、ニ・・・・こ さん か

gnet Z E span ((1,1,...,1)).

2 6 km(A). Az = 0.

booking at one now of A ...

But
$$(A)_{ix} \cdot \vec{z} = 0$$

But $(A)_{ix} \longrightarrow e$ some ease a
the step a

Since
$$(A): x \cdot z = 0$$

 $(0,0,1,00,...,0,-1,0,0)$
 $(2,2,...,2n)$

 $= \frac{1}{2} = \frac{$

What if the's no edge from
$$V_1 \longrightarrow V_2$$
 for exampl?

Is $Z_1 = Z_2$? Yes

Since G is connected the's a path from

J, -> Jk, -> Jk2 -> ... -> Vz

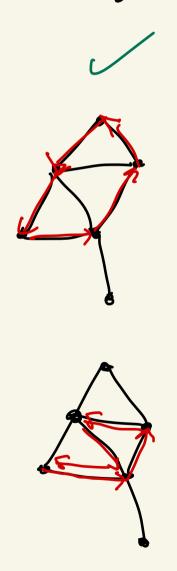
(finite)

$$|W(A)| \leq |Spen(\frac{1}{2})|$$

$$|W(A)| = |W(A)|$$

$$|W(A)| = |Spen(\frac{1}{2})|$$

Det! A circuit in a greph
is a Sequere of eases which
hegins at the same vertex.



Suppose we have a directed Steph up incione matrix Ainc, we have a laseling

an ording of all the edges.

The gun a circuit C = e, ez,..., ex.

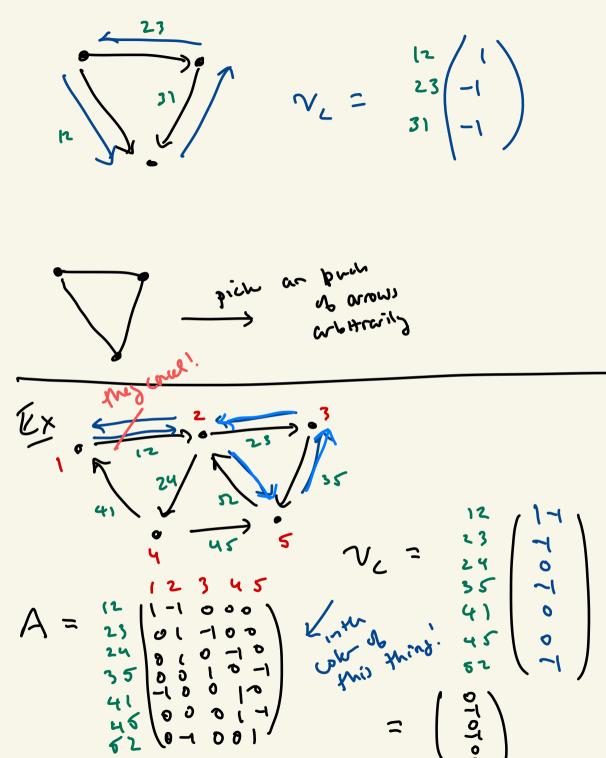
we car associate in to a vector mx)

(Vc) = { 0 if easy is not involved n the circuit goes forward along easy -1 if the circuit goes

backwards along the arrow.

Crowd is labeled as

$$\rightarrow 12, 23, 31$$
 $\rightarrow 1231$
 $\rightarrow 1231$
 $\rightarrow 23 \left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \sqrt{2}$
 $\rightarrow \sqrt{2} \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$
 $\rightarrow \sqrt{2} \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$
 $\rightarrow \sqrt{2} \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$



in whene of total number of travers y that 45 -1 ers in th crait! Thm Each Circuit in a digraph C is represented by a vector V_{ℓ} . Moreur VC & Coher (A inc)

Moreur Ve With of the form Ve

In fact except the coker(A),

generated the coker(A),

dein (coker (A in)) = # do independent

circuits do

circuits do

circuits do

The (skr (Ainc) = Span
$$\left(V_{c_1}, \dots, V_{c_n} \right)$$
 $C_1 \dots C_n$ are the independent circuits.

All other circuits are combinations of their circuits!

All other circuits!

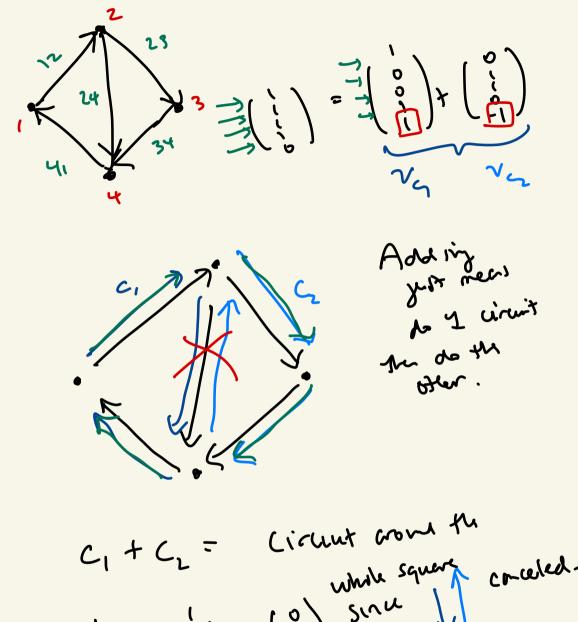
 $C_1 \dots C_n$

Alic = $\frac{12}{34} \left(\frac{1}{0} - \frac{1}{0} + \frac{1}{0} +$

color (Aine) = ker (A^T) = lur (100-10 0-11-00 00-11-1 courspand to Wravits combination of Clain:

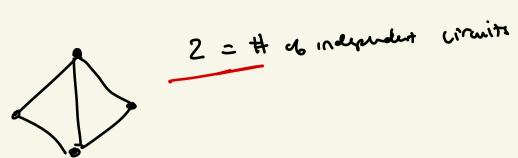
$$\frac{2}{24}$$

$$\frac{2}{34}$$



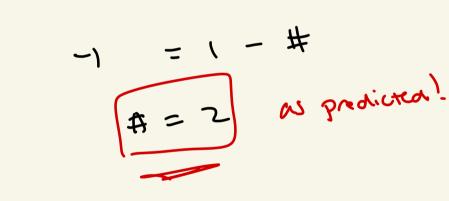
$$C_1 + C_2 = Circult crowd for checked considered cons$$

that we undusted that Caker (Aine) (marpindent Circuits but post on fired Thm (statement of them on fine) connected graph G, # vertices - # eases = 1 - # independing circuits data about the shape graph Church wa bungais Civeal Phi) greph has



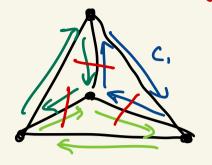
井∪- 井e= 1- 井 nd. Urd.

4 - 5 = 1- # 1 nd circ.



Sians on modernount! 井ノー井とニリーし

-2 = 1 - # ub Ind. circuits



 $c_1 + c_2 + c_3 =$

Circuit Corresponding to pe 4th side.

you deput on the

Final Exam Raview. use the where y

Thm (statement of them on finel) Com a cometed Japh G, # vertices - # eager = 1 - # independing circuits Pf: Recall # of Independent

Cirwit(= dim(wkr (A)). by out. (every vector in coker (A) A is man m= # of chares By 4 Fudaminal Subpeces

33 4 Findamital Subspaces N = rank(A) + dim(ker(A)) $N = \text{rank}(A^T) + \text{dim}(\text{ker}(A^T))$ $M = \text{rank}(A^T) + \text{dim}(\text{ker}(A^T))$

$$N = \operatorname{rank}(A) + \operatorname{dim}(\operatorname{bar}(A))$$

$$m = \operatorname{rank}(A^{T}) + \operatorname{dim}(\operatorname{valer}(A))$$

$$\operatorname{tar}(A) = \operatorname{span}(\frac{1}{2})$$

$$\operatorname{carants}.$$

$$\operatorname{dim}(\operatorname{var}(A)) = 1$$

$$\operatorname{rank}(A \operatorname{ric}) = N - 1 = \text{the various } -1$$

$$\operatorname{rank}(A \operatorname{ric}) = N - 1 = \text{the various } -1$$

$$\operatorname{rank}(A \operatorname{ric}) = N - 1 = \text{the various } -1$$

$$\operatorname{rank}(A \operatorname{ric}) = N - 1 = \text{the various } -1$$

 $rank(A^{T}_{inl}) = m - \# u_i ndep. urwite$ $= \# u_i edges. - \# u_i ndi.$ circ. n-1 = m - # uric # u - # e n-m = 1 - # = 1 - # ind. circ.

Def let G ha a Jreph.

Then the Euler characteristic X(b)

The of G

is defined by $\chi(6) = \# \text{ varies} - \# \text{ eages}$

The 1-# and chairs
= 1-dim (caler(Aino))

X(b) depuds on the shope of the graph, not on the exact graph.

え(い) = 1-2

X(4)= 4-5=-1

Why does the columnel of Ainc circuits of G? ATinc: Rm -> R

TRM has basis e, -- em

= 5pm (east 1, east 13, -- cast m) IRu = arbitrals frier combs of

ATinc(ein) = Vi-Vj

e31/03/e23

AT (e12 + e13 + e31)

= (1)-12+12-13+13(U)

= 0 Since ups a circuit
all vertues concul
gerfectly.

So Coker(A) = all circuit rectors.

For Kust Characteristic formula #e-#or in circ.

Jum Color = # do ind circuits