

Review. Exam 2 # 3. Compute an orthonormal basis for the orthogonal complement of the kend of the matrix $A = \begin{pmatrix} 1 & 2 & -1 & 3 & 1 \\ -1 & 1 & 5 & 1 & 2 \end{pmatrix}$ Det A basis {u1...un} is ormonormal if Ui.U; = 0 v i ≠; > (|u:11 =]. (u, u;) Gran-Schmidt is an algorithm that twos a basis into an orthogonal forthonormal one.

Def Crun a subspece
$$W \in V$$
 in
an inn product Space.
The orthogonal complement W^{\perp}
is the subspace
 $W^{\perp} = \{V | \langle V_{j} w \rangle = 0 \forall w \in W\}.$
 $W^{\perp} = \{V | \langle V_{j} w \rangle = 0 \forall w \in W\}.$
 $W^{\perp} = \{V | \langle V_{j} w \rangle = 0 \forall w \in W\}.$
 $W^{\perp} = \{V | \langle V_{j} w \rangle = 0 \forall w \in W\}.$
 $A = (1 2 - 1 3 1)$
 $W = (1 3 1 2)$
 $A = (1 2 - 1 3 1)$
 A

Pecall: Gun and matrix
$$H$$
,
the
 $mg(A) = color(A)^{\perp} = ler(A^{2})^{\perp}$
 $(mg(A^{2}) = mg(A)^{\perp})$

ond

$$ker(A)^{\perp} = comase(A)$$

 $= img(A^{\top}).$

So for this problem

$$|w(A)^2 = ing(A^T).$$

So we read a basis of $ing(A^T).$
 $A = \begin{pmatrix} 1 & 2 & -1 & 3 & 1 \\ -1 & 1 & 3 & 1 & 2 \end{pmatrix}$
 $A^T = \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ -1 & 3 \\ 3 & 1 \\ 1 & 2 \end{pmatrix}$
 $ing(A^T) = \overline{?}$

$$Ing(AT) = Span \left\{ Lslumn, \vartheta AT \right\},$$

$$\left(Ing(A) = \left\{ V = A \times | x \in \mathbb{R}^{5} \right\}$$

$$\downarrow \left(\left(x_{1}, x_{1}, x_{2}, x_{3}, x_{4}, y_{5} \right) \right)$$

$$\downarrow \left(x_{1}, x_{2}, x_{3}, x_{4}, y_{5} \right)$$

$$\downarrow \left(x_{1}, x_{3}, y_{3} \right)$$

$$\downarrow \left(x_{1}, x_{3}, y_{4} \right)$$

$$\downarrow \left(x_{1}, x_{3}, y_{4} \right)$$

$$\downarrow \left(x_{1}, x_{3}, x_{4}, y_{5} \right)$$

$$\downarrow \left(x_{1}, x_{3}, y_{4} \right)$$

$$\downarrow \left(x_{1}, x_{3}, y_{4} \right)$$

$$\downarrow \left(x_{1}, x_{3}, y_{4} \right)$$

$$\downarrow \left(x_{1}, x_{3}, x_{4} \right)$$

$$\downarrow \left(x_{1}, x_{3} \right)$$

$$\downarrow \left(x_{1}, x_{2} \right)$$

$$\downarrow \left(x_{1}, x_{3} \right)$$

$$\downarrow \left(x_{1}, x_{2} \right)$$

$$\downarrow \left(x_{2}, x_{3} \right)$$

$$\downarrow \left(x_{1}, x_{3} \right)$$

$$\downarrow \left(x_{1}, x_{2} \right)$$

$$\downarrow \left(x_{2}, x_{3} \right)$$

$$\downarrow \left(x_{1}, x_{2} \right)$$

$$\downarrow \left(x_{2}, x_{3} \right)$$

$$\downarrow \left(x_{1}, x_{2} \right)$$

$$\downarrow \left(x_{2}, x_{3} \right)$$

$$\downarrow \left(x_{1}, x_{2} \right)$$

$$\downarrow \left(x_{2}, x_{3} \right)$$

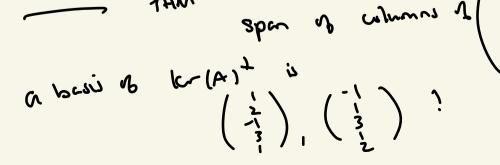
$$\downarrow \left(x_{1}, x_{2} \right)$$

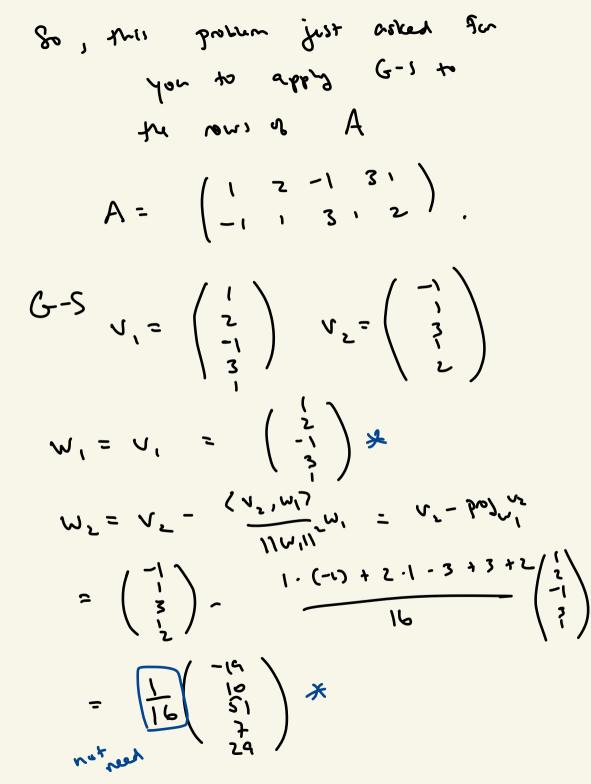
$$\downarrow \left(x_{2}, x_{3} \right)$$

$$\downarrow \left(x_{1}, x_{2} \right)$$

$$\downarrow \left(x_{2}, x_{3} \right)$$

$$\downarrow \left($$





$$W_{1} = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 3 \end{pmatrix} \qquad W_{2} = \begin{pmatrix} -19 \\ 10 \\ 51 \\ -1 \\ 29 \end{pmatrix}$$
$$W_{1} = \frac{1}{4}\begin{pmatrix} 1 \\ 2 \\ -1 \\ 5 \end{pmatrix} \qquad U_{2} = \frac{1}{\sqrt{3952}}\begin{pmatrix} -16 \\ 10 \\ 51 \\ -1 \\ 29 \end{pmatrix}.$$
$$U_{2} = \sqrt{3952}\begin{pmatrix} 1 \\ 3 \\ 29 \\ 29 \end{pmatrix}.$$
$$U_{3} = Spon row$$

So remember that
$$kr(A)^{\perp} = ing(A^{\perp})$$

 $- (G-S)$
 $- vnit vectors X$

Exam 2 #5. Find an inner product on R ² Such that (-1,2) and (-4,-2) are orthogonal in this inner product.
A formula (2,3) (110ger 100ger)
- bilinerity (x_1, y_2) factors etc - symmetry $(x_1, y_2) = (y_1, x_2)$ - possitivity $(x_2, x_2) = 0$ (0, 0) = 0.
Any inne product on R ^m (X is) = X ^T K y Where K is a new positive definite mostrix?

$$-4a + 2b + 8b - 4a = 0$$

 $-4a + 10b - 4a = 0$ s.t. K 70.

$$A = A - 8a + 10b = 0$$

$$b = \frac{4}{5}a$$

$$If a = 5, b = 4$$

$$K = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix} > 0$$

$$Jt is pos d4.$$

$$adt \\ (-12)(\frac{5}{4} + \frac{7}{2})(\frac{4}{-1}) = 0$$

$$(-12)(\frac{5}{4} + \frac{7}{2})(\frac{5}{-1}) = 0$$

$$(-12)(\frac{5}{4} + \frac{7}{2})(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-1})($$

$$(x_{1},y)_{V_{1}V_{2}} = \chi(-l_{1}L) + y(2_{1}-l)$$

$$(x_{1}y)_{V_{1}V_{2}} = \chi(-l_{1}L) + y(2_{1}-l)$$

$$(x_{1}y)_{V_{1}V_{2}} = \chi(-l_{1}L) + y(2_{1}+l) = (-l_{2})(\chi)$$

$$(\chi_{1}y)_{V_{1}V_{2}} = \chi(-l_{1}L) + y(2_{1}+l) = (-l_{2})(\chi)$$

$$(-(\iota) = (1,0)_{\nu_{1}\nu_{1}}$$

$$(u_{1}-2) = (0,2)_{\nu_{1}\nu_{2}}$$
What is the innor we user looking for
is given the dust product but in
 $V_{1}v_{2}$ coordinates?

$$\langle (-1,2), (u_{1}-2) \rangle = (1,0)_{\nu_{1}\nu_{2}} (0,2)_{\nu_{1}\nu_{2}}$$

$$II = 0$$

$$kTK''_{2} = k_{\nu_{1}\nu_{2}} \cdot y_{\nu_{1}\nu_{2}} \cdot y_{\nu_{1}\nu_{2}}$$

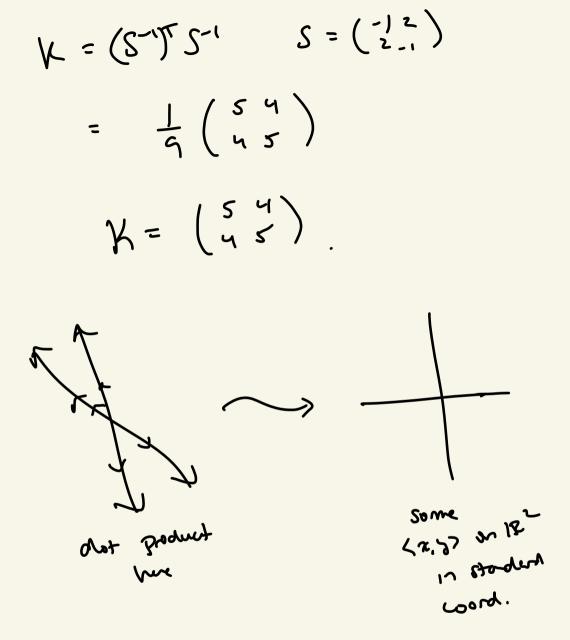
$$S = (-1)^{2}$$

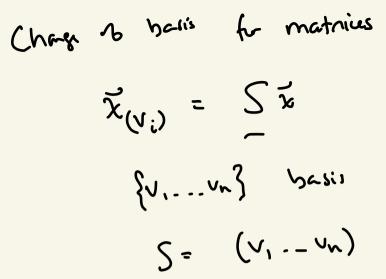
$$\leq Ke_{1}e_{2}, y_{2}e_{1}e_{2}$$

$$= \langle S^{-1}k_{\nu_{1}\nu_{2}}, S^{-1}y_{\nu_{1}\nu_{2}} \rangle$$

$$= (S^{-1}k_{2})^{T}S^{-1}y_{2} = x^{T}(S^{-1})^{T}S^{-1}y_{2}$$

$$= \chi^{T}K'y_{3}$$





A· IR -> IR

B= STAS

