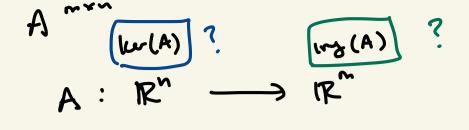


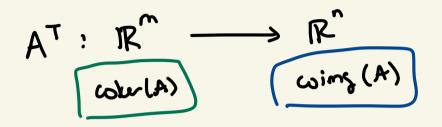
How do the systems
$$A \times z \ge b$$
 and
 $A^T \chi = b'$ relate?
In general A is $m \times n$, is A^T
is $n \times m$ is $puir kracks and$
(mages might the in Aiffurt
vector spoces.
 $A : IR^n \longrightarrow R^n$
 $m \times n \times n \times n \times n \times n$
 $U_1 \qquad U_1 \qquad U_1$

$\frac{Thm}{\text{let } A \text{ be a max matrix.}}$ $Then rank(A) = rank(A^{T}).$
Pf (ank (A) = dim (span & volument JA) = # of pivots in the reduced row each lon form
= # of leading 1's Recall, every leading 1 corresponded to an independent colume & A But every leading 1 had sit's Own row!

Def let A lee on man
metrix.
Define cokernel & A, coker(A),
to he
coker (A) = ker (A^T)
$$\leq IR^{n}$$

the
Define , coimage of A, cosing (A),
coimag(A) = imag(A^T) $\leq R^{n}$.
These on Subspaces.
Page deim (imag(A)) = deim (colong(A))
panke(A) cond(A^T)





The ker $(A) = \cos(A)^{\perp} \leq \mathbb{R}^n$ $\omega(w(A)) = img(A)^{\perp} \leq \mathbb{R}^m$

Pf Jn order to show kur(A) = coins(A)[⊥] ore equal, ve can show that zeker(A) iff z ⊥ w for all ve comp(A). $(et x \in coing (A)^{\perp}$ ⇒ 2 1 all rows of A. ⇒ a_{*j}· z = Arons * is fixed \Leftrightarrow $Ax = \vec{0}$ ★ x e ker(A). Therefore coing (A) = Ker (A). Coker (A) = Ker (A^T) $= coms(A^T)^{\perp}$ $= img((A^{T})^{T})^{\perp}$ $= img(A^{\perp})^{\perp}.$ D

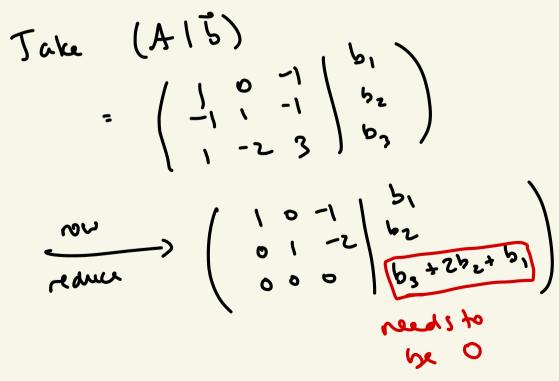
We ve actually done this already.
Let
$$A = \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 3 & 4 \end{pmatrix} A = \begin{pmatrix} -1 & 0 \\ 2 & 3 \\ 1 & 4 \end{pmatrix}$$

Let $W = \text{Span} \left\{ \begin{pmatrix} -1 \\ -1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} \right\}$.
Find W^{\perp}
Method is to put $\begin{pmatrix} -1 \\ -1 \\ 2 \\ 1 \end{pmatrix}, a_{A} \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix}$.
In the roots ob a maxim.
The $W^{\perp} = kr (A^{T})$
 $= (skr (A^{T}))$
 $= img(A)^{\perp}$.
 $A^{T} - 2 \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} -5 \\ -3 \\ 2 \\ -1 & 3 \end{pmatrix}$.
 $(kr (A^{T}) = \text{Span} \begin{pmatrix} -S \\ -3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -3 \\ 2 \\ 1 \end{pmatrix}$.

But more singly
$$\ln_{\delta}(A) = \frac{2}{A \times 1 \times e^{\frac{\pi}{A}}}$$

 $A \times = 5$ hes no solution if
 $b \notin \log(A)$
 $b \notin \log A$
 $b \notin \delta p on f b (alumns of A.$
 $(A \times 5t. A \times 5t)$
 $C_{1} \times 5t. A \times 5t$
 $C_{1} \times 1 + \cdots + C_{n} \times 5t$
 $b \notin (o \ker (A)^{\perp} = i m_{\delta}(A).$
 $A \times 5t. A \times 5t.$
 $b \notin (o \ker (A)^{\perp} = i m_{\delta}(A).$
 $A \times 5t. A \times 5t.$
 $b \notin (o \ker (A)^{\perp} = i m_{\delta}(A).$
 $A \times 5t. A \times 5t.$
 $b \notin (o \ker (A)^{\perp} = i m_{\delta}(A).$
 $A \times 5t. A \times 5t.$
 $b \notin (o \ker (A)^{\perp} = i m_{\delta}(A).$
 $b \notin (o \ker (A)^{\perp} = i m_{\delta}(A).$

Example (cludann vb lokr (A) = kr (A⁺). (et $A = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & -1 \\ 1 & -2 & 3 \end{pmatrix}$ We know that (oke (A) $= img(A)^{\perp}$. When is be ing (A)?



This system is consistent
(aka being (A))
iff
$$b_1 + 2b_2 + b_3 = 0$$

aka
 $(1, 2i)$ $(b_1 + b_2 + b_3) = 0$
 $(1, 2i)$ $(b_1 + b_2 + b_3) = 0$
 $(1, 2i)$ $(b_1 + b_2 + b_3) = 0$
 $= img(A)^{\perp}$

Because
$$b \in Img(A)$$

 $(A|b)$ consistent
 $(A$

Compteelly, Gker (A) is
conditions on the vector is
which makes
$$Ax = b$$
 consistent.
Then let being (A). The
 J a unique W such that
 $AW = b$, and $W \in Corring(A)$
 $= kr(A)^{\perp}$.

Furthermore || w|| is minimal
anong solutions to the
supton of equations
$$Ax = 5$$
.

Let
$$\chi$$
 he ang $Solin$.
 $kr(A)^{\perp} = cons(A)$.
 $\chi = wtz, z \in k-(A)$
 $wt cons(A)$.
 $A\chi = b$
 $A(wtz) = b$
 $A(wtz) = b$
 $Awt A\chi = b$
 Aw

$$V = R$$

$$Y = Q$$

$$Y_{1} = 3$$

$$Y_{2} = 3.1$$

$$Y_{3} = 3.14$$

$$Y_{4} = 3.141$$

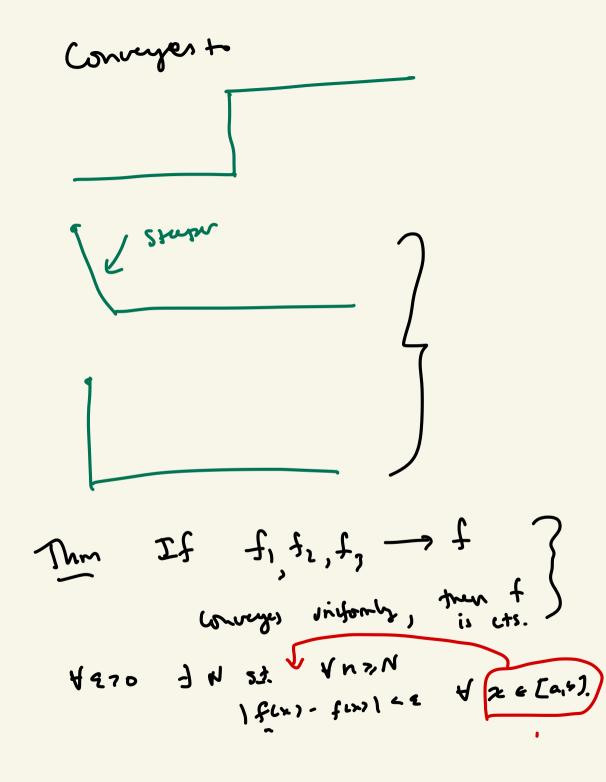
$$i \quad Cauchy in Q$$

Y closed iff Y contains a limit points

(Yi) he a sequere whice converses in V Yi -> 3, Jev.

suffices to show J+Y. Sinu yi → y in V (y:) is Country. =) (gi) is Cauchy in Y] ⇒) y ∈ Y. y Banach

$$\begin{array}{c}
\left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right) \\
f_{n} = \begin{cases}
0 \\ 1 \\ \left(\frac{1}{2} + 2^{n}, 1\right) \\
\text{Jin} \\
\left(\frac{1}{2} - 2^{n}, \frac{1}{2} + 2^{n}\right) \\
\end{array}$$



$$t^{3} = a_{0}P_{0} + a_{1}P_{1} + a_{2}P_{2} + a_{3}P_{3}$$
U(40,my P_{0}, R, P_{2}, P, $\in C^{\circ}[-1,1]$

$$(f_{1}g_{7}) = \int_{0}^{1} f(x)g_{1}(x) dx$$

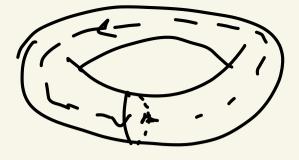
$$\|P_{0}\|^{2} = \int_{-1}^{1} P_{0}^{2} dx \quad P_{0} = 1$$

$$\|11\|^{2} = \int_{-1}^{1} P_{0}^{2} dx = 2$$

$$f_{1} [0,1] \rightarrow \mathbb{R}^{2} \quad f_{1} \cdot h \rightarrow 4$$

$$f_{1} : \int_{0}^{1} P_{0} = \int_{0}^{1} P_{0}^{2} dx$$

$$f_{2} : \int_{0}^{1} P_{0}^{2} dx$$



(1000 · CTI franci [0,1] ---> X