

Yesturday...
We defind a line function

$$T: V \rightarrow W$$

 $T(v+v) = T(v)+T(w)$
 $T(v) = cT(v)$
 $A: \mathbb{R}^n \longrightarrow \mathbb{R}^n \quad \vec{x} \longrightarrow A\vec{x}$
 $A is mxn$
 $d : C'[a,5] \longrightarrow (°[a,5])$
 $\int -dx: C^{\circ}[a^{\circ}] \longrightarrow \mathbb{R}$

$$\begin{split} & \left[u t \quad T_{1} : V \rightarrow W \quad T_{2} : V \rightarrow W \right] \\ & T_{1} : T_{2} \in Hom(V_{1}W). \\ & Define(T_{1} + T_{2})(V) \\ & = T_{1}(V) + T_{2}(V). \\ & (Iaum : T_{1} + T_{2})(V) + T_{2}(V). \\ & (Iaum : T_{1} + T_{2})(V + V) \\ & = T_{1}(U + V) \\ & = T_{1}(U + V) + T_{2}(U + V) \\ & = T_{1}(U + V) + T_{2}(U) + T_{2}(V) + T_{2}(V) \\ & T_{1} = U + T_{2}(U) + T_{2}(V) \\ & = T_{1}(U) + T_{2}(U) + T_{2}(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) + (T_{1} + T_{2})(V) \\ & = (T_{1} + T_{2})(V) \\$$

Define
$$(CT)(v) = cT(v)$$
, $C \in IR$
 cT is a 150 liner.
Turns out that there $T_1 + T_2$ and cT
subject space axioms, to
Hom (V, W) is a vector space!
 Ex All lineer functions from
 $R^1 \rightarrow R^1$ are of the
form $T(x) = ax$.
Hom $(R^1, R^1) = \{au \ linear \ functions \ form \ R^2 \rightarrow R^2 \}$
 $= \{au \ functions \ form \ R^2 \rightarrow R^2 \}$
 $a \in R$
 $a \in R$

Ex All linear functions from
$$\mathbb{R}^n \to \mathbb{R}^m$$

one of the form $J(x) = Ax$
A is an maxim.

Hom
$$(IR^{n}, IR^{m})$$

= $\{all \ line functions \ IR^{n} \rightarrow IR^{m}\}$
= $\{all \ functions \ T(x) = Ax\}$
only returns priece
 $b \ info$
= $\{A \mid A \in M_{mxn}(R)\}$
= $M_{mxn}(R)$
Temember $M_{mxn}(R)$ is a vector space
 $A + B$, cA $dim(M_{mxn}(R))$
So $Hom(IR^{n}, IR^{m})$ is a $v.s$ too.

Def: let V be a vector space.
Define
$$V^*$$
, "V dual", by
 $V^* = Hom(V, \mathbb{R}^{1})$
 $= \{all linear functions\}$

$$E_{X} (\mathbb{R}^{n})^{*}$$

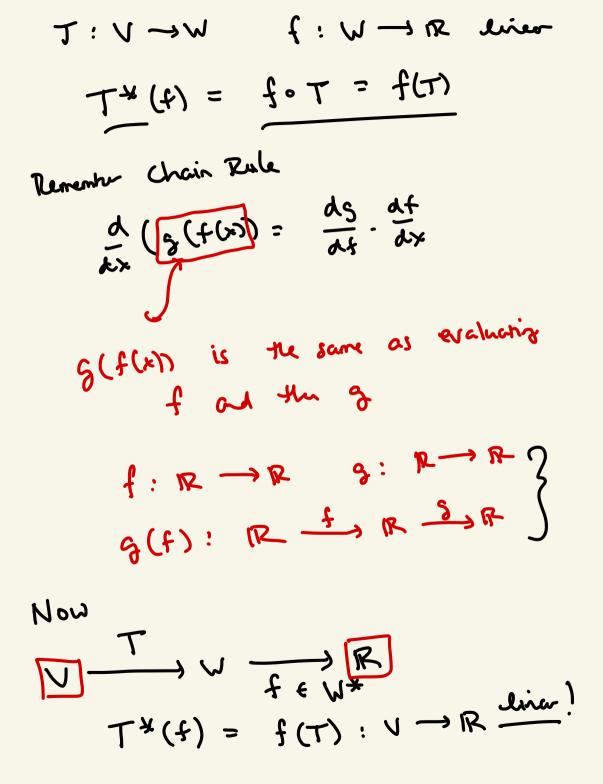
$$= Hom (\mathbb{R}^{n}, \mathbb{R})$$

$$= AH Lineor functions from $\mathbb{R}^{n} \to \mathbb{R}^{n}$

$$= AH Lineor functions (m=1)$$

$$= AH Lineor functions (m=1)$$$$

Det: com a lineo fuerio J: V-JW, ve can define a dual function $J^*: W^* \longrightarrow V^*$ reverses order! a liver fuitro - W T¥ T¥ input : W-NR changes output: a line fuction demain $V \longrightarrow \mathbb{R} = V \xrightarrow{*} G_{*} \xrightarrow{*} G_{*}$ is a futuror V-> IR it T*(f) $f: V \rightarrow \mathbb{R}$. What's actual furnicle for T*(f)? Cive input f: W >18, output of J* is $f(T): V \rightarrow \mathbb{R}$ VJV +R



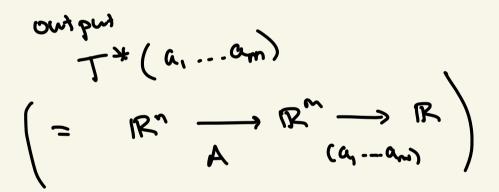
<u>Pf</u>;

$$T^*: (\mathbb{R}^m)^* \longrightarrow (\mathbb{R}^n)^*$$

$$all row$$

$$vectos$$

$$(a are an) : (\mathbb{R}^m \longrightarrow \mathbb{R}$$



= (a, ... an) A

rows, columns, notnus an Specific to IRM.

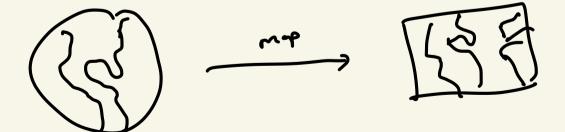
But no nours, columns, or matrices for vector spaces line (°[a,5]

If a function f(x) is a " column vector", a "nou vector" would a liner function $C^{\circ}[a,b] \rightarrow \mathbb{R}$

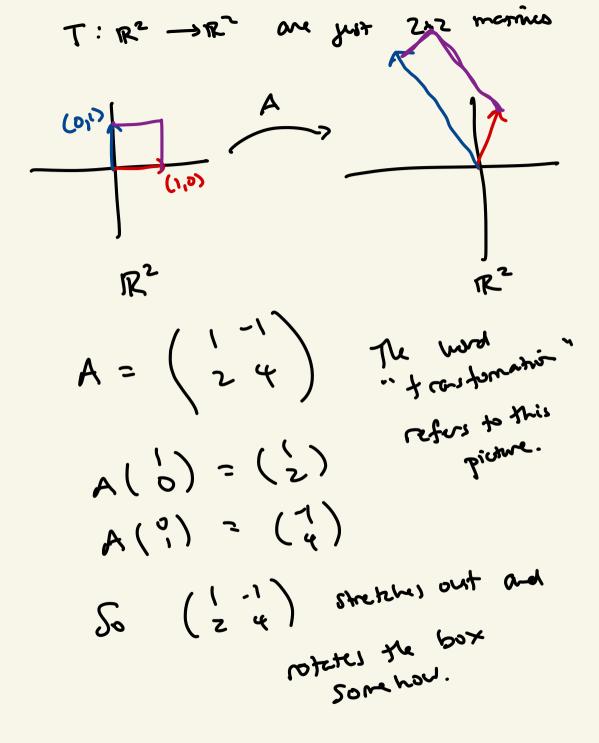
"Now very" $T_{f}(g) = \int_{a}^{b} f(x)g(x) dx$ $= (f,g) \in (^{o}[a;b])^{*}$

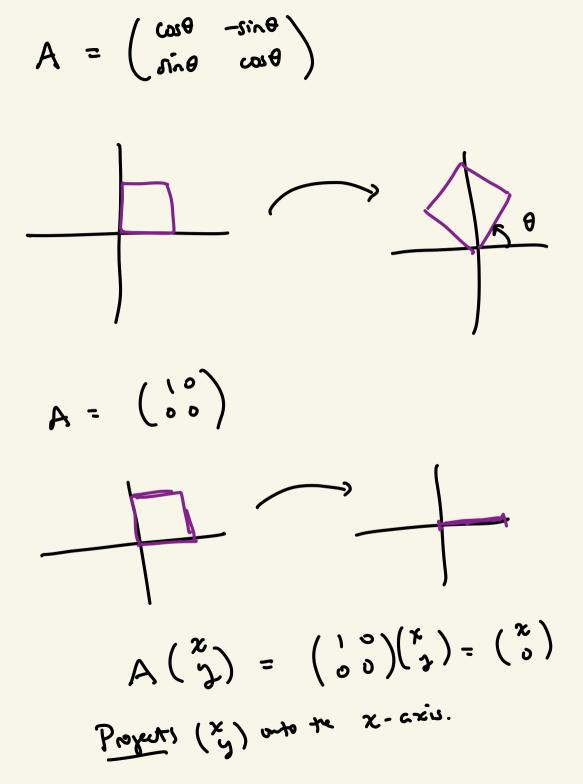
OR more generally "ou"
"OWMANDS"
$$f \longrightarrow (f_1 -): V \longrightarrow R$$

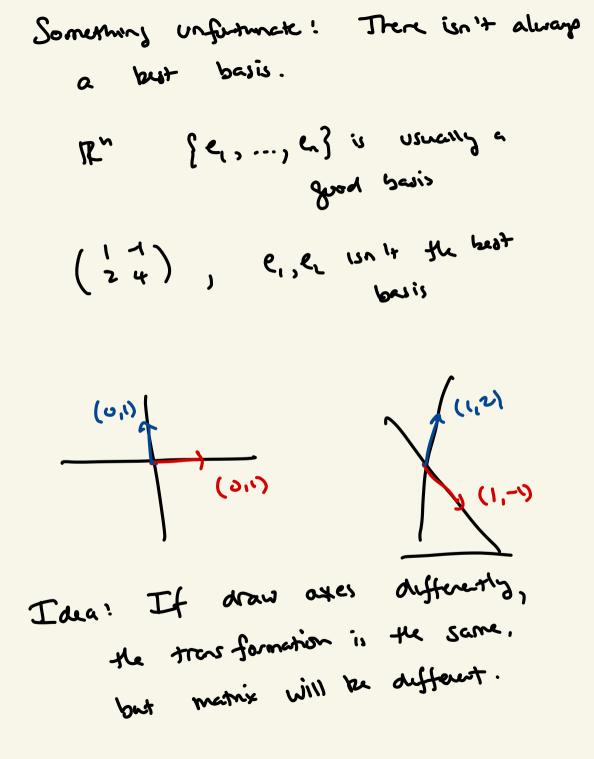
(et V be a f.d real inre product
space.
Then all drive functions from
 $V \longrightarrow R$ are of the form
 $T(v) = \langle a, v \rangle$ for some $a \in V$.
 $V^* = \{au \mid \text{ linear functions } V \longrightarrow R\}$
 $= \{an T(v) = \langle a, v \rangle\}$
 $= \{an T(v) = \langle a, v \rangle\}$
 $= \{a, -2 \mid a \in V\}$
 $= v \text{ row vectors } V$

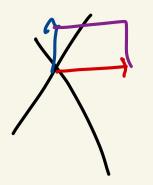


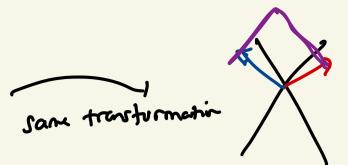
 $f: A \longrightarrow B$











Since the axces on different, the marrix mult Will be auffernt. (1-1) is not the right matrix in your vird axes!

Given anothe choice of exes, what is the marrix?

x (ai) (۱^۱۵) In stand and coordinates $\begin{pmatrix} a \\ b \end{pmatrix} = a(b) + b(b)$ $= ae_1 + be_2$ In IR2 of basis V, , V2, (3) might refer to au,+ buz. E_{X} If $V_{1} = (-1) V_{2} = (-2)$ the in v,vz wordinates (_') $\binom{1}{0}_{\sqrt{2}} = \sqrt{1} \sqrt{2} = \sqrt{1}$ ()) J = Out 102 - ('₂)

$$\begin{aligned} & (Q: T : \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\ & \text{ and is Standard Coordinates} \\ & T(\frac{x}{y}) = (\frac{1}{2} + \frac{1}{y})(\frac{x}{y}) \\ & T(\frac{x}{y}) = (\frac{1}{2} + \frac{1}{y}) \\ & T(\frac{x}{y})_{y,y_{1}} = B(\frac{x}{y})_{y,y_{1}} \\ & T(\frac{x}{y})_{y,y_{1}} = B(\frac{x}{y})_{y,y_{1}} \\ & \text{How do we calculate B in} \\ & \text{from the } (\frac{1}{2} + \frac{1}{y})? \end{aligned}$$

$$\begin{pmatrix} x \\ y \end{pmatrix}_{v,v_2} = x \overline{v}_i + y \overline{v}_2$$

= $(\overline{v}_i \overline{v}_2) \begin{pmatrix} x \\ y \end{pmatrix}$
= $(\overline{v}_i \overline{v}_2) \begin{pmatrix} x \\ y \end{pmatrix}$. $S = (v, v_2)$
So S is a metrix which converts
from e.e. word. to
 $V_i \overline{v}_2$ word

Ex Write
$$\binom{5}{3}$$
 in $U_1 = \binom{1}{4} V_2 = \binom{1}{2}$
(ourdinates)
 $S = \binom{1}{-1} - 2$
 $\binom{5}{3}_{U_1 V_2} = \binom{1}{-1} \binom{5}{3}$
 $= \binom{8}{-11}$
 $\binom{5}{3}_{U_1 V_2} = S_{U_1} + 3_{U_2} = \binom{9}{-11}$
 $\binom{x}{3}_{U_1 V_2} = \binom{5}{3}_{e_1 e_2}$
 $x \binom{-1}{1} + \frac{9}{4} \binom{1}{-1} = \binom{5}{3}$
 $\binom{1}{-1} \frac{1}{-2} \binom{x}{3} = \binom{5}{3}$
 $\binom{x}{-1} = \binom{5}{3}$

B=27 R (-1) Rivi S⁻¹ S S'S R $\begin{bmatrix} 1 - 1 \\ 2 & 4 \end{bmatrix} = A$ \mathbb{R}^{-} $B = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ $B = \begin{bmatrix} -1 & -2 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 4 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ -1 & -2 \end{bmatrix}$ $B = \begin{bmatrix} -1 & -2 \\ -1 & -2 \end{bmatrix}$ $B = \begin{bmatrix} -1 & -2 \\ -1 & -2 \end{bmatrix}$ $B = \begin{bmatrix} -1 & -2 \\ -1 & -2 \end{bmatrix}$ $A = \begin{bmatrix} -1 & -2 \\ -1 & -2 \end{bmatrix}$ $A = \begin{bmatrix} -1 & -2 \\ -1 & -2 \end{bmatrix}$ $B = \begin{bmatrix} -1 & -2 \\ -1 & -2 \end{bmatrix}$ $A = \begin{bmatrix} -1 & -2$

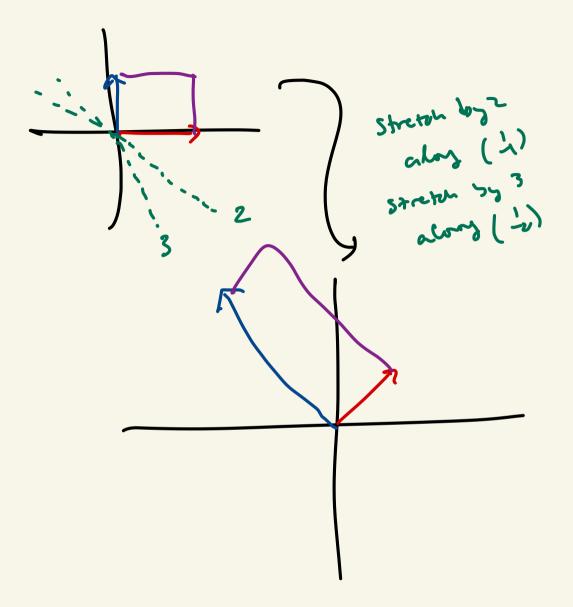
$$S = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} y \\ y \end{pmatrix} = \begin{pmatrix} y \\ y \end{pmatrix}$$

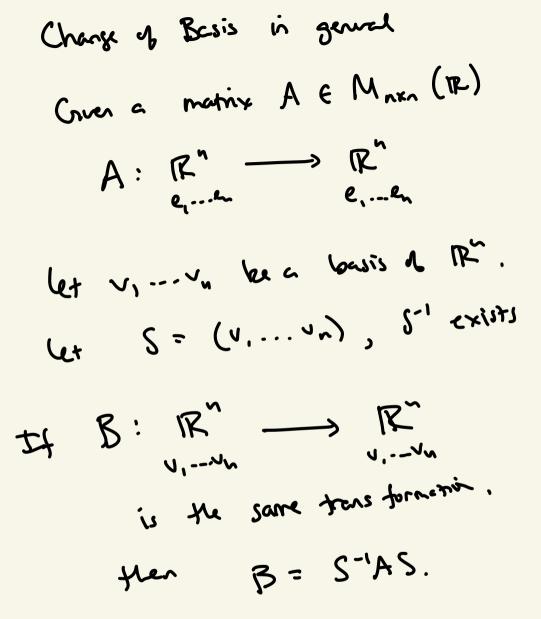
$$S^{-1} = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}$$

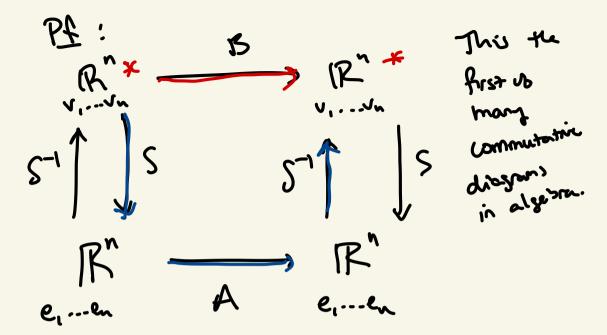
$$A = \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & -2 \end{pmatrix}$$

$$B = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix}$$

$$This He matrix for He transformetion He transformetio$$







 $\chi_1 \vee_1 + \dots + \chi_n \vee_n$ (Sx)= reguler $= \begin{pmatrix} x \\ \vdots \\ y \end{pmatrix}_{y i}$ B: R ~ R hing the same trai formation just says that this box "commutes". $S:(v,\ldots v_n)$ $|B = S^{T}AS|$

How do we comme A from W1 --- why coordinates to $V_1 \dots W_n$ coordinates? $T = (W_1 \dots W_n)$ $S = (V_1 \dots V_n)$ $\mathbb{R}_{v_i} \xrightarrow{\mathbb{B}} \mathbb{R}_{v_i}$ $s \int 5^{-1} s \int T s^{-1} T s$ $\frac{1}{R} \xrightarrow{A'} \frac{1}{R} \xrightarrow{IS} \frac{1}{Vcutors} Vi$ V: to wi. $B = S^{T}AT^{T}S = (T^{T}S)^{T}A(T^{T}S)$