
1. Find all 2× 2 matrices A which satisfy the equation

A2 = 2I.

Solution. Let A =

(
a b
c d

)
. Then the above equations becomes(

a2 + bc b(a+ d)
c(a+ d) d2 + bc

)
=

(
2 0
0 2

)
.

Then a, d = ±
√

2− bc and either b, c = 0 or a = −d. If b, c = 0, then the matrix has the
form (

±
√

2 0

0 ±
√

2

)
.

Else if a = −d, then bc ≤ 2 to keep the matrix real, so that the matrix has the form(
±
√

2− bc b
c ∓

√
2− bc

)
.

2. Compute the permuted LDV decomposition of the matrix0 1 2
0 2 3
1 −1 0

 .

Determine the rank and dimension of the kernel as well.

Solution. 0 0 1
0 1 0
1 0 0

0 1 2
0 2 3
1 −1 0

 =

1 0 0
0 1 0
0 1/2 1

1 0 0
0 2 0
0 0 1/2

1 −1 0
0 1 3/2
0 0 1


The matrix is invertible since it is nonsingular (there are 3 pivots). Thus the rank is 3

and the dimension of the kernel is 0.

3. Let P n be the vector space of polynomials of degree ≤ n. Find the dimension of this
vector space.

Solution. The dimension of P n is n + 1. We can show that the polynomials {1, x, . . . , xn}
form a basis of P n. These functions are independent since if c0 + c1x + . . . cnx

n = 0 as a
function, then ci = 0 since polynomials only have finite amount of roots. These functions
span by definition of degree. Thus they form a basis and dimP n = n+ 1.

4. (a) Let A =

(
−1 3
1 2

)
and x =

(
x
y

)
. Compute the expression xTAx. (b) Consider the

polynomial in two variables 2x2 + xy + 3y2. Write find a matrix B such that polynomial in
the form

2x2 + xy + 3y2 = xTBx.

(c) Show that every polynomial of the form ax2 +bxy+cy2 can be written in the form xTMx
where M is a symmetric matrix.
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Solution. (a) −x2 + 4xy + 2y2 (b) B =

(
2 1
0 3

)
(c) The matrix M has the form(

a b/2
b/2 c

)
.

5. Let V be a vector space. Let U and W be subspaces of V . (a) Show that the intersection
U ∩W is a subspace. (b) Let V = R4. Find subspaces U and W such that dimU ∩W = 0.

Solution. (a) Let v, w ∈ U ∩W . In particular both v and w are in both U and W . First
U ∩W is nonempty since 0 ∈ U and 0 ∈ W . Then v + w ∈ U since U is a subspace and
similarly for W . Thus v + w ∈ U ∩W . Finally, if c ∈ R, then cv ∈ U since U is a subspace
and similarly for W . Thus cv ∈ U ∩W .

(b) If we let U = span{(1, 0, 0, 0)T , (0, 1, 0, 0)T} and W = span{(0, 0, 1, 0)T , (0, 0, 0, 1)T}.
These subspaces have trivial intersection since all of the vectors are linearly independent.

6. Recall that the trace of a square matrix A is the sum of its diagonal elements.

trA =
∑
i

ai,i = a1,1 + · · ·+ an,n

Show that the set of matrices A with trA = 0 is a subspace of the vector space Mn×n(R).

Solution. This subset is nonempty since the 0 matrix has zero trace. Let A and B be matrices
with tr(A) = 0 = tr(B). For additive closure, note that tr(A + B) = tr(A) + tr(B), since
matrices add component wise. Therefore tr(A + B) = 0 + 0 = 0. To show that scalar
multiplication is closed, note that tr(cA) =

∑
i c(A)i,i = c tr(A) = 0. Thus the trace zero

matrices form a subspace.

7. Determine whether the vector
(
1 2 3 4

)T
is in the span of the vectors

−1
1
−2
0




0
0
−1
2




7
−3
0
2

.
Solution. Put the three vectors in the first three columns of a matrix, and make (1, 2, 3, 4)T

the last column of the matrix. If the system has a free column in the fourth column, then
the last vector is dependent on the other three. If it doesn’t, then the fourth vector is
independent of the other three.

This matrix actually row reduces to the identity.
−1 0 7 1
1 0 −3 2
−2 −1 0 3
0 2 2 4

 −→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Therefore the vector (1, 2, 3, 4)T is not in the span of the other 3.

8. Consider the vector space C0(R) of continuous functions on R. Show that the functions
f(x) = cos(2x), g(x) = cos2(x) and h(x) = 1 are linearly dependent in this vector space.
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Solution. The double angle formula is

cos(2x) = 2 cos2(x)− 1.

Rewritten, this is a linear relationship between the functions so that f(x)−2g(x)+h(x) = 0
and they are dependent.

9. (a) Find the numbers a such that the columns of the following matrix form a basis of R3.

A =

 a 1 2
0 a 1
−1 2 a


(b) For what a is the rankA = 1? How about rankA = 2?

Solution. (a) By the main theorem for square matrices, detA = 0 iff the columns of A do
not form a basis. Taking the determinant, we obtain that detA = a3 − 1 = 0. The only
solution in the reals is a = 1. So when a 6= 1, the columns form a basis of R3.

(b) We know that rankA = 3 when a 6= 1. So we just have to check what the rank is
when a = 1. In this case, the matrix row reduces to1 0 1

0 1 1
0 0 0


which is rank 2 since it has 2 pivots. Alternatively, you could have seen that the first two
columns of A are independent one is not a multiple of the other. Either way, the rank is 1
for no a ∈ R, and for a = 1, the rank is 2.

10. Define R∞ to be the set of all infinite sequences of real numbers. (a) Show that the set
of all convergent subsequences is a subspace. (b) Determine whether C is finite or infinite
dimensional.

Solution. First of all, the way I phrased the question doesn’t tell you how R∞ is a vector
space. We can write a sequence as a tuple that just never ends.

(a1, a2, . . . )

You can add these like vectors in Rn. They add component-wise, and scalar multiply
component-wise as well. These operations satisfy the 7 axioms.

(a) Let (ai) = (a1, a2, . . . ) and (bi) = (b1, b2, . . . ) be convergent sequences. Since they’re
convergent, let (ai) → a and (bi) → b. Recall that the sum of two convergent sequences is
also convergent, so that (ai + bi)→ a+ b. Thus C is closed under addition.

Given a scalar c, it is clear that c(ai) = (cai) → ca. Therefore C is closed under scalar
multiplication as well. The set C is also nonempty (since (0, 0, . . . ) ∈ C), and therefore C is
a subspace of R∞.

(b) This subspace is infinite dimensional. Assume for contradiction that there exists a
finite basis {(xi)1, (xi)2, . . . , (xi)n}, so that dimC = n. Then by Theorem 2.31, any set of
sequences {(yi)1, . . . , (yi)k} is linearly dependent when k > n. We can show that this leads
to a contradiction by finding k linearly independent convergent sequences for k > n.
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Pick any number k > n. Let (eij) be the sequence defined by{
eij = 0 i 6= j

eii = 1

Here i is not an exponent. It is in index, I’m just putting where the exponent usually goes
because there was already another index in the subscript. For example

(e1j) = (1, 0, 0, . . . ) and (e3j) = (0, 0, 1, 0, 0, . . . ).

These are essentially the standard basis vectors, but now they are sequences instead.
First, note that (eji )→ 0 for all j. This is true since if we let N > j, then for all n > N ,
|ejn− 0| = 0 < ε for all ε > 0. (Oops I used n twice, different n here.) So all of our “standard
basis sequences” are convergent to zero, and (eji ) ∈ C.

Now consider the set of sequences

{(e1i ), (e2i ), . . . , (eki )}
where k > dimC = n as you recall. By Lemma 2.31, this set of vectors should be dependent,
since k > dimC. But we can show that they are independent. For given a linear combination

c1(e
1
i ) + · · ·+ ck(eki ) = (0, 0, . . . )

adding these component wise gets us the equation

(c1, c2, . . . , ck, 0, 0, . . . ) = (0, 0, . . . ).

Therefore c1 = · · · = ck = 0, and the (e1i ), . . . , (e
k
n) are independent. Therefore we have

contradiction, and C is not finite dimensional.

Perhaps a faster way to say this is that C has arbitrarily large sets of independent vectors
in it, so there can be no finite basis.


