Textbook: 1.1.1c, 1.2.1, 1.2.4c, 1.2.5ab, 1.2.7abcd, 1.3.1c, 1.3.3ab, 1.3.16ab, 1.3.21ad, 1.5.3ad, 1.5.19, 1.5.27, 1.6.3, 1.6.19

Extra Problem #1: Consider the matrix

$$
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
$$

Find all real 2×2 matrices that commute with A.

Hint for 1.6.3: Remember that the basic formula is $(AB)^T = B^T A^T$ and not $A^T B^T$. So this problem is having you figure out what needs to happen for $(AB)^T = A^T B^T$ to be true. (And it turns out $AB = BA$ needs to be true.) Perhaps ask yourself when you are solving this problem, if $AB = BA$, does $B^T A^T = A^T B^T$?

Solution (1.2.1). (a) 3×4 , (b) 7, (c) 6, (d) $(-2 \ 0 \ 1 \ 3)$, (e) $\sqrt{ }$ \mathcal{L} 0 2 6 \setminus $\overline{1}$

Solution (Extra Problem). Let $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. If B commutes with A, then $AB = BA$. Expanding this equation, we obtain

$$
\begin{pmatrix} a & a+b \ c & c+d \end{pmatrix} = \begin{pmatrix} a+c & b+d \ c & d \end{pmatrix}.
$$

By equating the corresponding entries, we see that $a = d$ and $c = 0$. So therefore if B commutes with this particular matrix A, then it is of the form

$$
\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}.
$$

Conversely it is easy to check that all matrices of this form commute with A.

Solution (1.3.21c). The matrix $\sqrt{ }$ \mathcal{L} −1 1 −1 1 1 1 −1 1 2 \setminus can be row reduced to the upper triangular matrix $U =$ $\sqrt{ }$ −1 1 −1 \setminus

 $\overline{1}$ 0 2 0 0 0 3 by the row operations $r'_1 = r_1 + r_2$ and $r'_3 = -r_1 + r_3$ in that order. The matrix L keeps

track of the inverses of these row operations, so $(L)_{21} = -1$ from the first operation and $(L)_{31} = 1$ from the second. Thus,

Solution (1.5.19). First, $A \sim A$ by $A = I^{-1}AI$ where I is the identity matrix. We can find any matrix that makes them similar, and the identity fits.

Second, assume $A \sim B$, so that $B = S^{-1}AS$. Then rearranging this equation yields

$$
A = SBS^{-1} = (S^{-1})^{-1}BS^{-1}.
$$

Therefore $B \sim A$ by the matrix S^{-1} .

Finally assume $A \sim B$ and $B \sim C$. Let $B = S^{-1}AS$ and $C = T^{-1}BT$. Substituting the first equation into the second gives us

$$
C = T^{-1}S^{-1}AST = (ST)^{-1}A(ST).
$$

Therefore $A \sim C$ by the matrix ST .

Solution (1.6.3). Assume A, B are square commuting. Then their transposes also commute, for $AB = BA$ implies $(AB)^T = (BA)^T$, which is $B^T A^T = A^T B^T$. Therefore

$$
(AB)^T = B^T A^T = A^T B^T.
$$

Conversely, assume $(AB)^T = A^T B^T$. First, we show that A and B are square. Let A be $m \times n$, and B be $n \times p$. The *n* dimensions agree since AB exists as a matrix product. But since A^TB^T exists as a product, then $m = p$. Furthermore Then $(AB)^T$ has dimensions $p \times m$ and $A^T B^T$ has dimension $n \times n$. Since these matrices are equal, we can conclude that $m = n = p$, so these matrices are square.

Now we show they commute. Indeed

$$
AB = ((AB)^{T})^{T} = (A^{T}B^{T})^{T} = (B^{T})^{T}(A^{T})^{T} = BA.
$$

Solution (1.6.19). Let A be a symmetric matrix. Then we can show that indeed A^2 is also symmetric. Remember by definition symmetric matrix means $A^T = A$. So we can show that $(A²)^T = A²$ to finish the problem. Indeed since $A^T = A$, then

$$
(A2)T = AT AT = AA = A2.
$$

You can also do this entry by entry, note that

$$
(A2)ij = \sum_{k=1}^{n} A_{ik} A_{kj} = \sum_{k=1}^{n} A_{ki} A_{jk} = \sum_{k=1}^{n} A_{jk} A_{ki} = (A2)ji.
$$

Solution (1.3.1c). We form the augmented matrix out of the system and row reduce.

Thus $u = 3/2$, $v = -1/3$, and $w = 1/6$.