MATH 4242, Section 001 Homework 3 Fall 2020

Textbook: 2.1.2, 2.2.22) 2.3.2, 2.3.3a, 2.3.23a, 2.3.31, 2.4.1, 2.4.3, 2.4.21

Solution (2.1.2). Here we have the somewhat strange formula that (z,y) + (u,v) = (uz,vy) and c(z,y) =
(z¢,y°). We show that this defines a vector space if we restrict our attention to (x,y) in the first quadrant,
ie. 2,y >0. SoV ={(z,y) | z,y > 0}.

We have to show that these formulas for + and c¢(z,y) satisfy the 7 properties.

For commutivity,
(#,y) + (u,v) = (uz,vy) = (2u,yv) = (u,v) + (2,9).

For associativity,

(z,y) + ((u,v) + (w, 2)) = (z,y) + (vw, vz) = (Tuw,yvz) = (Tu,yv) + (W, 2) = ((z,9) + (u,v)) + (w, 2).

The zero element is not (0,0) anymore. In fact (0,0) € V so it cannot be the zero vector. In fact now
0 = (1,1) serves as the zero vector here. Remember the defining feature of the zero vector was that 740 = ¥
no matter what v was. Here 0 = (1,1) play that role. Indeed (z,y) + (1,1) = (1z, ly) = (z,y).

Also, —¥ cannot be (—z,

y) in th1s case. Things like (—1,—2) ¢ V anymore. We need —4 to have the
property that v + (=) =

,1). So in fact in this vector space

—ey) = () = (1, 1) |

Ty

0]

Indeed (z,y) + —(z,y) = (z,y) + (1/x,1/y) = (x/z,y/y) = (1,1) = 0. Note that (1/z,1/y) exists since
x,y > 0 and in particular x,y # 0.

Now we just have to show the other properties like distributivity and things like that. They are true as
follows.

c(x,y) + c(u, v) = (2% y°) + (0, 0%) = (@5 y*°) = ((zu)°, (yo)°) = e((, y) + (u,v))

(c+d)(z,y) = (T, yt) = (a%%, yy?) = (2°,y°) + (2%, y%) = c(2,y) + d(z,y)

c(d(z,y)) = c(2?,y?) = ((29)°, (y9)°) = (2°%,y*) = (cd)(z,y)
Finally, the scalar ¢ = 1 behaves trivially on V', by 1(z,y) = (z!,y') = (x,%). Therefore we have shown all
7 properties of this weird + and -, so it is a vector space V.
Solution (2.2.22). (a) Let W and Z be subspaces of a vector space V. We show that their intersection
W N Z is also a subspace. Just to be clear, the intersection is

WnZ={veV|veWandve Z}

so W N Z consists of vectors in both W and Z.

Well we just have to show that W N Z satisfies the 3 properties of being a subspace, assuming W and Z
both do. First, since W and Z are both subspace, they contain zero vector, i.e. 0 € W and 0 € Z. So since
0 is in both, then 0 € W N Z.

Second, assume that wi,ws € W N Z. Then we need to show that wy +we € W N Z. Since wi,we € WNZ,
they are in both W and Z individually. Since both are subspace, they are closed under addition individually,
so in particular wy + w9 € W and wy + we € Z. Since w1 + wo is in both, then wy +wy € W N Z.
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Third, given any scalar ¢ and @ € W N Z, we need to show that civ € W N Z as well. Again since W and Z
are subspace individually, then they are closed under scalar multiplication individually. So w € W and
w € Z implies that cwd € W and cw € Z for both. Since ¢ is in both, then cwd € W N Z.

We have shown all 3 properties, so W N Z is a subspace.

(b) The sum is also a subspace. I'll do this one a little faster. Define W+ Z ={v eV |[v=w+ z,w €
W,z e Z}.

First, since0 e W and 0 € Z, then0=04+0€ W + Z.
Second, given w1 + 21 € W + Z and wo + 29 € W + Z, then

w1 + 21 + w + 22 = (w1 + wa) + (21 + 22).

Since w1 + wg € W (remember W is a subspace), and z; + 22 € Z, then the total sum is in W + Z.
Finally, c¢(w + z) = cw + cz. Since cw € W and ¢z € Z, then c(w +2) € W + Z.

(¢) Now we can prove that W U Z is a subspace iff Z C W or W C Z. Remember that U refers to unioning,
so W U Z would be the set of vectors in either W OR Z.

Assume that W U Z is a subspace. Then we have to show that either W was inside of Z or Z was inside of
W to begin with. Suppose for contradiction that W & Z and Z ¢ W. Then there is a vector w € W but
w ¢ Z and similarly let z € Z but z ¢ W. Then w+ 2z € W U Z since W U Z is assumed to be a subspace.
Let v =w + 2. Since v € W U Z, it is in either one or the other. Assume without loss of generality that
v € W. Then

v—w=(w+z)—w=z

But v e Wand w e W so z=v—w € W. But we assumed that z € W by construction. This is a
contradiction, so either Z C W or W C Z.

Conversely, assume Z C W or W C Z. Then in either case WU Z = W or Z (depending on which one’s
bigger), and it is a subspace since W and Z are.

Solution (2.3.2). To show that a vector lies in a span, we put the vectors as columns of a matrix and row
reduce. In this case we row reduce the matrix as

1 -2 -2 -3 100 3
-3 6 4 7 R 01 0 2
-2 3 6 6 0 011
0 4 -7 1 0 00O

Columns with leading 1’s correspond to independent vectors, and else the column depends on the others.
Therefore the last column depends on the other 3 and in particular we know what the relationship is from
the entries. Indeed

1 -2 -2 -3

-3 6 4 7

31 9 +2 3 +1 s | =1 6

0 4 -7 1
Solution (2.3.31). (a) Suppose v1,...,v, are independent vectors, and we consider the subset of them
v1,...,V where k < n. We show this set is also independent. Indeed assume for contradiction that
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c1v1 + ... ¢ = 0 is a nontrivial linear dependence, i.e. at least one of the ¢; # 0. But then we would have
a nontrivial linear dependence between the original vectors

c1v1 + ... cpvg + Ovgyq + ... Ov, = 0.
Since v1,...,v, were independent, then this is a contradiction. Thus vy, ..., v; are independent as well.

(b) This is not true for dependent vectors. Suppose we have v; = (—1,2) and vy = (1,—2). These are
dependent, but the subset v; = (—1,2) is independent.

Solution (2.4.1). All of these can be solved by putting the vectors into a matrix and row reducing. If you
get the identity, it’s a basis. If you don’t, it’s not a basis. Remember that you need 2 vectors to form a
basis of R?, no more no less. So you don’t even have to row reduce some of these.

(a) Yes (b) No (c¢) Yes (d) No (e) No.

Solution (2.4.3). Again you can find out everything you need to know by putting the vectors as columns of
a matrix and row reducing to RREF. We get

100 3
-1 -2 -2 3 — 010 -1
00 1 =2

(a) They do span R? because we have 3 independent vectors. (b) They are not linearly independent since v4
depends on the first 3. (c) They do not form a basis of R3. First of all, they’re dependent. Second of all we
have 4 of them and not 3 since dim R? = 3. (d) The dimension of the span is 3 since we have 3 independent
vectors. The first 3 vectors form a basis.

Solution (2.4.21). (Proof 1) Suppose that vy, ..., v, form a basis of R". Let A be a nonsingular (invertible)
matrix. We show that Avq,..., Av, is also a basis of R".

Indeed we know that n vectors form a basis of R™ iff the matrix with the vectors as columns row reduces to
the identity, which is the same as being invertible. So we need to show that the matrix

B = (Av1 Avn)
is invertible.
Let C be the matrix with v; as columns. We know that C' is invertible since the vy, ..., v, form a basis in
the first place. Then by the matrix multiplication formula
B = (Avl Avn) = AC.

Since both A and C' are invertible, then so is B since B~! = C~'A~!. Since B is invertible, its columns
form basis.

(Proof 2) Since we have n vectors, Avy,..., Avy,, then we just have to show that they are independent
and they automatically span. We can show they are independent by definition. Suppose we have a linear
relation

c1Avy + ...¢c,Av, = 0.

We show that ¢; = ¢y = --- = 0 to show independence.

Factoring out A, we get that
A(civg + -+ cpopn) =0

and multiplying both sides by A~! yields that cjv1 + - -+ + c,v, = 0. Since vy, ..., v, form a basis to begin
with, then they are independent. Therefore by definition ¢; = 0. Therefore Avy, ..., Av, are independent
also. As noted, n independent vectors always form a basis of R".



