
MATH 4242, Section 001 Homework 3 Fall 2020

Textbook: 2.1.2, 2.2.22, 2.3.2, 2.3.3a, 2.3.23a, 2.3.31, 2.4.1, 2.4.3, 2.4.21

Solution (2.1.2). Here we have the somewhat strange formula that (x, y) + (u, v) = (ux, vy) and c(x, y) =
(xc, yc). We show that this defines a vector space if we restrict our attention to (x, y) in the first quadrant,
i.e. x, y > 0. So V = {(x, y) | x, y > 0}.

We have to show that these formulas for + and c(x, y) satisfy the 7 properties.

For commutivity,
(x, y) + (u, v) = (ux, vy) = (xu, yv) = (u, v) + (x, y).

For associativity,

(x, y) + ((u, v) + (w, z)) = (x, y) + (uw, vz) = (xuw, yvz) = (xu, yv) + (w, z) = ((x, y) + (u, v)) + (w, z).

The zero element is not (0, 0) anymore. In fact (0, 0) 6∈ V so it cannot be the zero vector. In fact now
~0 = (1, 1) serves as the zero vector here. Remember the defining feature of the zero vector was that ~v+~0 = ~v
no matter what v was. Here ~0 = (1, 1) play that role. Indeed (x, y) + (1, 1) = (1x, 1y) = (x, y).

Also, −~v cannot be (−x,−y) in this case. Things like (−1,−2) 6∈ V anymore. We need −~v to have the
property that v + (−~v) = ~0 = (1, 1). So in fact in this vector space

−(x, y) = (x−1, y−1) =

(
1

x
,

1

y

)
.

Indeed (x, y) + −(x, y) = (x, y) + (1/x, 1/y) = (x/x, y/y) = (1, 1) = ~0. Note that (1/x, 1/y) exists since
x, y > 0 and in particular x, y 6= 0.

Now we just have to show the other properties like distributivity and things like that. They are true as
follows.

c(x, y) + c(u, v) = (xc, yc) + (uc, vc) = (xcuc, ycvc) = ((xu)c, (yv)c) = c((x, y) + (u, v))

(c + d)(x, y) = (xc+d, yc+d) = (xcxd, ycyd) = (xc, yc) + (xd, yd) = c(x, y) + d(x, y)

c(d(x, y)) = c(xd, yd) = ((xd)c, (yd)c) = (xcd, ycd) = (cd)(x, y)

Finally, the scalar c = 1 behaves trivially on V , by 1(x, y) = (x1, y1) = (x, y). Therefore we have shown all
7 properties of this weird + and ·, so it is a vector space V .

Solution (2.2.22). (a) Let W and Z be subspaces of a vector space V . We show that their intersection
W ∩ Z is also a subspace. Just to be clear, the intersection is

W ∩ Z = {v ∈ V | v ∈W and v ∈ Z}

so W ∩ Z consists of vectors in both W and Z.

Well we just have to show that W ∩ Z satisfies the 3 properties of being a subspace, assuming W and Z
both do. First, since W and Z are both subspace, they contain zero vector, i.e. 0 ∈W and 0 ∈ Z. So since
0 is in both, then 0 ∈W ∩ Z.

Second, assume that w1, w2 ∈W ∩Z. Then we need to show that w1 +w2 ∈W ∩Z. Since w1, w2 ∈W ∩Z,
they are in both W and Z individually. Since both are subspace, they are closed under addition individually,
so in particular w1 + w2 ∈W and w1 + w2 ∈ Z. Since w1 + w2 is in both, then w1 + w2 ∈W ∩ Z.
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Third, given any scalar c and ~w ∈W ∩Z, we need to show that c~w ∈W ∩Z as well. Again since W and Z
are subspace individually, then they are closed under scalar multiplication individually. So w ∈ W and
w ∈ Z implies that c~w ∈W and c~w ∈ Z for both. Since c~w is in both, then c~w ∈W ∩ Z.

We have shown all 3 properties, so W ∩ Z is a subspace.

(b) The sum is also a subspace. I’ll do this one a little faster. Define W + Z = {v ∈ V | v = w + z, w ∈
W, z ∈ Z}.

First, since 0 ∈W and 0 ∈ Z, then 0 = 0 + 0 ∈W + Z.

Second, given w1 + z1 ∈W + Z and w2 + z2 ∈W + Z, then

w1 + z1 + w2 + z2 = (w1 + w2) + (z1 + z2).

Since w1 + w2 ∈W (remember W is a subspace), and z1 + z2 ∈ Z, then the total sum is in W + Z.

Finally, c(w + z) = cw + cz. Since cw ∈W and cz ∈ Z, then c(w + z) ∈W + Z.

(c) Now we can prove that W ∪Z is a subspace iff Z ⊆W or W ⊆ Z. Remember that ∪ refers to unioning,
so W ∪ Z would be the set of vectors in either W OR Z.

Assume that W ∪ Z is a subspace. Then we have to show that either W was inside of Z or Z was inside of
W to begin with. Suppose for contradiction that W 6⊆ Z and Z 6⊆W . Then there is a vector w ∈W but
w 6∈ Z and similarly let z ∈ Z but z 6∈W . Then w + z ∈W ∪ Z since W ∪ Z is assumed to be a subspace.
Let v = w + z. Since v ∈ W ∪ Z, it is in either one or the other. Assume without loss of generality that
v ∈W . Then

v − w = (w + z)− w = z.

But v ∈ W and w ∈ W so z = v − w ∈ W . But we assumed that z 6∈ W by construction. This is a
contradiction, so either Z ⊆W or W ⊆ Z.

Conversely, assume Z ⊆W or W ⊆ Z. Then in either case W ∪ Z = W or Z (depending on which one’s
bigger), and it is a subspace since W and Z are.

Solution (2.3.2). To show that a vector lies in a span, we put the vectors as columns of a matrix and row
reduce. In this case we row reduce the matrix as


1 −2 −2 −3
−3 6 4 7
−2 3 6 6
0 4 −7 1

 −→


1 0 0 3
0 1 0 2
0 0 1 1
0 0 0 0

.

Columns with leading 1’s correspond to independent vectors, and else the column depends on the others.
Therefore the last column depends on the other 3 and in particular we know what the relationship is from
the entries. Indeed
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
1
−3
−2
0

+ 2


−2
6
3
4

+ 1


−2
4
6
−7

 =


−3
7
6
1

 .

Solution (2.3.31). (a) Suppose v1, . . . , vn are independent vectors, and we consider the subset of them
v1, . . . , vk where k < n. We show this set is also independent. Indeed assume for contradiction that
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c1v1 + . . . ckvk = 0 is a nontrivial linear dependence, i.e. at least one of the ci 6= 0. But then we would have
a nontrivial linear dependence between the original vectors

c1v1 + . . . ckvk + 0vk+1 + . . . 0vn = 0.

Since v1, . . . , vn were independent, then this is a contradiction. Thus v1, . . . , vk are independent as well.

(b) This is not true for dependent vectors. Suppose we have v1 = (−1, 2) and v2 = (1,−2). These are
dependent, but the subset v1 = (−1, 2) is independent.

Solution (2.4.1). All of these can be solved by putting the vectors into a matrix and row reducing. If you
get the identity, it’s a basis. If you don’t, it’s not a basis. Remember that you need 2 vectors to form a
basis of R2, no more no less. So you don’t even have to row reduce some of these.

(a) Yes (b) No (c) Yes (d) No (e) No.

Solution (2.4.3). Again you can find out everything you need to know by putting the vectors as columns of
a matrix and row reducing to RREF. We get

 1 2 0 1
−1 −2 −2 3
2 5 1 −1

 −→

1 0 0 3
0 1 0 −1
0 0 1 −2

.

(a) They do span R3 because we have 3 independent vectors. (b) They are not linearly independent since v4
depends on the first 3. (c) They do not form a basis of R3. First of all, they’re dependent. Second of all we
have 4 of them and not 3 since dimR3 = 3. (d) The dimension of the span is 3 since we have 3 independent
vectors. The first 3 vectors form a basis.

Solution (2.4.21). (Proof 1) Suppose that v1, . . . , vn form a basis of Rn. Let A be a nonsingular (invertible)
matrix. We show that Av1, . . . , Avn is also a basis of Rn.

Indeed we know that n vectors form a basis of Rn iff the matrix with the vectors as columns row reduces to
the identity, which is the same as being invertible. So we need to show that the matrix

B =
(
Av1 . . . Avn

)
is invertible.

Let C be the matrix with vi as columns. We know that C is invertible since the v1, . . . , vn form a basis in
the first place. Then by the matrix multiplication formula

B =
(
Av1 . . . Avn

)
= AC.

Since both A and C are invertible, then so is B since B−1 = C−1A−1. Since B is invertible, its columns
form basis.

(Proof 2) Since we have n vectors, Av1, . . . , Avn, then we just have to show that they are independent
and they automatically span. We can show they are independent by definition. Suppose we have a linear
relation

c1Av1 + . . . cnAvn = 0.

We show that c1 = c2 = · · · = 0 to show independence.

Factoring out A, we get that
A(c1v1 + · · ·+ cnvn) = 0

and multiplying both sides by A−1 yields that c1v1 + · · ·+ cnvn = 0. Since v1, . . . , vn form a basis to begin
with, then they are independent. Therefore by definition ci = 0. Therefore Av1, . . . , Avn are independent
also. As noted, n independent vectors always form a basis of Rn.
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