
MATH 4242, Section 001 Homework 5 Fall 2020

Problem 1. In this problem, we will walk through the proof why the L1 norm ‖v‖1 =
∑n

i=1 |vi| on Rn has
no associated inner product.

(a) Suppose we have an inner product 〈−,−〉 and its associated norm ‖v‖ =
√
〈v, v〉. Show the equality

〈v, w〉 =
1

4
(‖v + w‖2 − ‖v − w‖2).

This is called the polarization identity.

(b) Now suppose for contradiction that there is an inner product formula 〈−,−〉1 such that ‖v‖1 =
√
〈v, v〉1.

Then by a), we would know it had to have the formula 〈v, w〉1 = 1
4(‖v + w‖21 − ‖v − w‖21). But it turns out

that this leads us to trouble. Show that the expression

1

4
(‖v + w‖21 − ‖v − w‖21)

is in fact NOT an inner product. This would complete the proof, by contradiction. (Hint: Maybe try
showing that bilinearity on R2 is false.)

Solution. (a) Start on the right side and simplify to the left.

1

4
(‖v + w‖2 − ‖v − w‖2) =

1

4
(〈v + w, v + w〉 − 〈v − w, v − w〉)

=
1

4
(‖v‖2 + 2〈v, w〉+ ‖w‖2 − ‖v‖2 + 2〈v, w〉 − ‖w‖2)

=
1

4
(4〈v, w〉) = 〈v, w〉

(b) As in the problem statement, let

〈v, w〉1 =
1

4
(‖v + w‖21 − ‖v − w‖21).

We can show that the expression is not an inner product. To make it easier, we can let n = 2 for now. Then
let ~u,~v ∈ R2. The expression written out in coordinates is

〈u, v〉1 =
1

4
((|u1 + v1|+ |u2 + v2|)2 − (|u1 − v1|+ |u2 − v2|)2).

It seems unlikely that this is bilinear. In particular, we should be able to pull out scalars, but this is in fact
false. We claim that

〈u, cv〉1 6= c〈u, v〉1.
To show that these are not equal, we can find one particular counterexample. Let u = (1, 1), v = (1, 0),
and c = 2. Then on the one hand 〈u, 2v〉1 = 〈(1, 1), (2, 0)〉1 = 0, but on the other hand 2〈u, v〉1 =
2〈(1, 1), (2, 0)〉1 = 3. Since 3 6= 0, we know that 〈−,−〉1 is not bilinear and therefore not an inner product.
If we want to generalize this counterexample to other n, one can just add on some zeroes to the end of
these vectors. Consider u = (1, 1, 0, . . . , 0) and v = (1, 0, 0, . . . , 0). The calculations are the same.

Problem 2. Given an inner product 〈−,−〉, prove the parallelogram identity

2 ‖v‖2 + 2 ‖w‖2 = ‖v + w‖2 + ‖v − w‖2 .

Solution. We can start with the right side and simplify to the left.

‖v + w‖2 + ‖v − w‖2 = 〈v, v〉+ 2〈v, w〉+ 〈w,w〉+ 〈v, v〉 − 2〈v, w〉+ 〈w,w〉
= 2〈v, v〉+ 2〈w,w〉
= 2 ‖v‖2 + 2 ‖w‖2
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Textbook: 3.2.9, 3.2.31, 3.2.36, 3.3.20abc, 3.4.1abcd, 3.4.10, 3.4.25

Solution (3.2.9). The Cauchy-Schwartz inequality is the fastest way to prove this inequality. Let ~a =
(a1, . . . , an) and ~1 = (1, 1, . . . , 1). Then the Cauchy-Schwartz inequality says that

|〈~a,~1〉| ≤ ‖~a‖ ‖~1‖.

Computing all the terms of this inequality out,

〈~a,~1〉 = a1 + · · ·+ an

‖~1‖ =
√

1 + · · ·+ 1 =
√
n

‖~a‖ =
√

a21 + · · ·+ a2n.

Plugging this into the C-S inequality and squaring both sides yields

(a1 + · · ·+ an)2 ≤ n(a21 + · · ·+ a2n).

Solution (3.2.36c). Let p(x) = a+ bx+ cx2 be an orthogonal polynomial to 1 and x. We know that 〈1, p〉 = 0
and 〈x, p〉 = 0, so we can turn these two equations into a system of linear equations in a, b, c.

〈1, p〉 =

∫ 1

−1
a + bx + cx2 dx = 2a +

2

3
c = 0

〈x, p〉 =

∫ 1

−1
ax + bx2 + cx3 dx =

2

3
b = 0

Written as a matrix system, we obtain(
2 0 2/3
0 2/3 0

)a
b
c

 =

(
0
0

)

Maybe this is some overkill, but the RREF is

(
1 0 1/3
0 1 0

)
so we have a general solution

a
b
c

 =

−1/3
0
1

 c =

−1
0
3

 c′.

Therefore polynomials of the form p(x) = c(−1 + 3x2) are all orthogonal to 1 and x

Solution (3.4.1abcd). (a) It is positive definite. The quadratic form is

q(x) = xTKx = x21 + 2x22 > 0.

(b) It is not positive definite. The quadratic form is

q(x) = 3x1x2

which is not positive, particularly if x = (1,−1). OR it fails the determinant test.

(c) It is not positive definite. The quadratic form is

q(x) = x21 + 4x1x2 + x22.
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In particular, this is not positive when x = (−1, 1). Or you can argue it fails the determinant test.

(d) It is not positive definite. Again fails the determinant test. or you can see the quadratic form
q(x) = 5x21 + 6x1x2 − 2x22 is negative for x = (0, 1).

Solution (3.4.10). Let K be a nonsingular symmetric matrix. (a) If x = Ky then

xTK−1x = (Ky)TK−1Ky = yTKTK−1Ky = yTKT y = yTKy.

This last step holds since KT = K is the definition of symmetric.

(b) If K is positive definite, then yTKy > 0 for all y 6= 0. Now consider xTK−1x where x 6= 0. Then since
K is invertible, we have that y = 0 iff x = Ky = 0. Furthermore by part a),

xTK−1x = yTKy > 0

for x 6= 0. Thus K−1 is positive definite.

Solution. The Gram matrix is

K =

 〈1, 1〉 〈1, ex〉 〈1, e2x〉
〈1, ex〉 〈ex, ex〉 〈ex, e2x〉
〈1, e2x〉 〈ex, e2x〉 〈e2x, e2x〉

 =

 1 e− 1 1
2(e2 − 1)

e− 1 1
2(e2 − 1) 1

3(e3 − 1)
1
2(e2 − 1) 1

3(e3 − 1) 1
4(e4 − 1)

 .

This matrix is positive definite since the vectors were independent to begin with.
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