
MATH 4242, Section 001 Homework 6 Fall 2020

Textbook: 3.4.30b, 3.4.31, 3.6.26abc, 3.6.30b, 4.1.1abc, 4.1.4, 4.1.21, 4.1.23, 4.2.1

Hint for 3.4.31b: This problem is hard given what we’ve learned so far, so let me outline a solution.

� Prove that kerA ⊆ kerATA, i.e. Ax = 0 implies ATAx = 0.

� Prove that kerATA ⊆ kerA, i.e. ATAx = 0 implies Ax = 0.

Start by showing that Ax ∈ cokerA and Ax ∈ imgA

Next use this to show that ‖Ax‖2 = 0.

Conclude that Ax = 0.

� Conclude that kerATA = kerA.

� Use rank-nullity to show that rankATA = rankA.

� Use rank-nullity to show that rankAAT = rankAT .

� Conclude that rankATA = rankAAT .

Solution (3.4.30b). Let S = ST be a symmetric and nonsingular matrix. We prove that S2 is positive
definite. (This is reminiscent of a2 being positive for a nonzero real number a.)

We can show that for any x 6= 0 ∈ Rn, that the quadratic for xTS2x > 0. Indeed since S is symmetric:

xTS2x = xTSSx = xTSTSx = (Sx)T (Sx) = ‖Sx‖2 .

Since S is nonsingular, then when x 6= 0, then Sx 6= 0 as well. By positivity of the norm, Sx 6= 0 implies
that ‖Sx‖2 > 0 and the proof is complete.

Solution (3.4.31). (a) To see that L = AAT is a Gram matrix, we can write A in terms of its rows, as

A =


−−−− a1∗ −−−−
−−−− a2∗ −−−−

...
−−−− am∗ −−−−

 .

Then compute L as

L = AAT =


−−−− a1∗ −−−−
−−−− a2∗ −−−−

...
−−−− am∗ −−−−



∣∣∣∣ ∣∣∣∣ ∣∣∣∣

a1∗ a2∗ . . . am∗∣∣∣∣ ∣∣∣∣ ∣∣∣∣

 =


a1∗ · a1∗ a1∗ · a2∗ . . . a1∗ · am∗
a1∗ · a2∗

. . .
...

...
. . .

...
a1∗ · am∗ . . . . . . am∗ · am∗

 .

Therefore L is the m×m Gram matrix of the rows of A with respect to the dot product on Rn. Similarly
K = ATA is the n× n Gram matrix of the columns of A.

(b) First, claim that kerA = kerATA. Indeed A is m × n and ATA is n × n, so the kernels are both
subspaces of Rn. But even more than that, they are equal sets. First suppose that x ∈ kerA, i.e. Ax = 0.
Then ATAx = A0 = 0 so that x ∈ kerATA. This shows that kerA ⊆ kerATA.

To show that kerATA ⊆ kerA, assume that x ∈ kerATA, i.e. ATAx = 0. My hint is a little redundant, but
AT (Ax) = 0 means that Ax ∈ kerAT = cokerA and Ax ∈ imgA by definition. Anyhow, these equations
help us show that Ax = 0. First,

‖Ax‖2 = Ax ·Ax = (Ax)T (Ax) = xTATAx = xT (0) = 0.
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Since ‖Ax‖2 = 0, the only possible vector Ax could be is 0. Therefore Ax = 0. Since Ax = 0, then x ∈ kerA
and kerA = kerATA as desired.

Finally we can finish this proof by rank-nullity. Since kerA = kerATA, then dim kerA = dim kerATA. By
rank-nullity

rankATA = n− dim kerATA = n− dim kerA = rankA.

Similarly
rankAAT = m− dim kerAAT = m− dim kerAT = rankAT .

But we know that rankAT = rankA, so we can conclude that

rankATA = rankA = rankAT = rankAAT .

(c) We know that both ATA and AAT are positive definite iff the columns and rows of A are both
independent, by the main theorem of Gram matrices. However the only way for both the rows and columns
to be independent is if the matrix A is square, and invertible by the fundamental theorem of linear algebra.
Thus we need A to be square and invertible.

Solution (3.6.26). You can solve these by taking a determinant or by row reduction. I’ll just say how they
are dependent if they are dependent.

(a) Independent (b) Dependent (1− i)

(
1 + i

1

)
=

(
2

1− i

)
. (c) Independent

Solution (3.6.30b). Consider the matrix (
2 −1 + i 1− 2i
−4 3− i 1 + i

)
.

First, find the RREF form using the steps r′2 = 2r1 + r2, r
′
2 = 1

1+ir2, and r′1 = (−1 + i)r2 + r1. Remember
that

1

1 + i
=

1

1 + i

1− i

1− i
=

1− i

12 + 12
=

1− i

2

so the last step is more simply r′2 = 1−i
2 r2. Therefore the RREF is(

1 0 −1− 5i/2
0 1 −3i

)
.

Then a basis for the kernel is

kerA = span

1 + 5i/2
3i
1


and the image is

imgA = span

(
2
−4

)
,

(
−1 + i
3− i

)
.

We know that there are two independent columns, so there are two independent rows, namely all the rows
are independent. So the rows form a basis of the coimage.

coimgA = span

 2
−1 + i
1− 2i

 ,

 −4
3− i
1 + i


Finally we know that rankAT = 2 and AT has 2 columns, so rank-nullity says that dim cokerA = 2− 2 = 0.
The only 0 dimensional subspace is cokerA = 0, so v = 0 is the basis.
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Solution (4.1.1abc). (a) orthogonal basis (b) orthonormal basis (c) not a basis

Solution (4.1.4). It is clear that 〈e1, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0, so the standard basis is orthogonal with
respect to this weighted dot product. To find the orthonormal basis, we can calculate u1 = e1/ ‖e1‖, etc.
This yields

u1 = (1, 0, 0) u2 =
(

0, 1√
2
, 0
)

u3 =
(

0, 0, 1√
3

)
.

Solution (4.1.23). (a) First, these two vectors are independent so they form a basis of R2. (Remember 2
independent vectors in R2 always span already.) They are orthogonal since

(
1 1

)( 2 −1
−1 3

)(
−2
1

)
=
(
1 2

)(−2
1

)
= 0.

(b) We can compute the coefficients as

c1 =
〈v, v1〉
‖v1‖2

=

(
3 2

)( 2 −1
−1 3

)(
1
1

)
(
1 1

)( 2 −1
−1 3

)(
1
1

) =
7

3

and

c2 =
〈v, v2〉
‖v2‖2

=

(
3 2

)( 2 −1
−1 3

)(
−2
1

)
(
−2 1

)( 2 −1
−1 3

)(
−2
1

) =
−5

15
=
−1

3
.

Therefore (
3
2

)
=

7

3

(
1
1

)
+
−1

3

(
−2
1

)
which can see is true. It works without row reduction!

(c) According to (4.8), it should be that

‖(3, 2)‖2 =

(
7

3

)2

‖v1‖2 +

(
−1

3

)2

‖v2‖2 =
49

9
(3) +

1

9
(15) = 18.

Indeed

‖(3, 2)‖2 =
(
3 2

)( 2 −1
−1 3

)(
3
2

)
= 18

as desired!

(d) To form an orthonormal basis, we can just divide by the magnitude of each basis vector.

u1 = v1
‖v1‖ = 1√

3

(
1
1

)
u2 = v2

‖v2‖ = 1√
15

(
−2
1

)
.

(e) Now that we have an orthonormal basis we can use (4.5) instead. Indeed

(
3
2

)
=

7√
3
u1 +

−5√
15

u2
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as desired. Furthermore we can compute the norm

‖v‖2 =

(
7√
3

)2

+

(
−5√

15

)2

= 18

which is also what we wanted!
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