1. Consider the following two vector functions $x_1(t) = \begin{bmatrix} 1 \\ t \end{bmatrix}$ and $x_2(t) = \begin{bmatrix} t \\ t^2 \end{bmatrix}$. (a) Calculate $W(x_1, x_2)$. (b) Show that these two vector functions are independent. (c) Explain why parts (a) and (b) don't contradict each other.

Solution: (a) $W(x_1, x_2) = \det \begin{bmatrix} 1 & t \\ t & t^2 \end{bmatrix} = (1)(t^2) - (t)^2 = 0$ (b) They are independent since the equation $c_1 \begin{bmatrix} 1 \\ t \end{bmatrix} + c_2 \begin{bmatrix} t \\ t^2 \end{bmatrix} = 0$ for all t, forces $c_1 = c_2 = 0$. Plugging in t = 0, gives $c_1 = 0$. Then $c_2 \begin{bmatrix} t \\ t^2 \end{bmatrix} = 0$ which means $c_2 = 0$. (c) They don't contradict each other since x_1 and x_2 are no solutions to a linear differential equation.

2. Solve the following differential equation, and find the domain of the solution. Must the solution be unique on that domain?

$$y' = \frac{y}{x^2 - 1}$$
 $y(0) = 2$

Solution: $y = \frac{2\sqrt{|x-1|}}{\sqrt{|x+1|}}$, the domain is $x \neq -1$. This solution is unique on an interval $I \subset (-1,1)$ since the equation has discontinuities as $x = \pm 1$, by the theorem in 1.3.

3. Consider a population of rabbits with a birth rate $\beta = 0.5P$ thousand births per time and a death rate of $\delta = 0.1$ thousand deaths per time. Find the differential equation that models this population and determine the carrying/threshold capacity. Draw the phase plane for this model and determine the stability of the critical points.

Solution: The model is $P' = P(\beta - \delta) = P(0.5P - 0.1) = -0.5P(0.2 - P)$, so we have an explosion/extinction model. The threshold capacity is M = 0.2 = 200 rabbits. The phase plane has an unstable equilibrium at P = 2 and a stable on at P = 0.

4. Draw the bifurcation diagram of the system

$$y' = yh^2 - y^2$$

and identify any possible bifurcation points.

Solution: The picture of the bifurcation diagram is a parabola $y = h^2$ and a straight line y = 0.

Note: I think I will update the solutions for #3 and #4 with pictures tomorrow afternoon.

5. Show that if B is a noninvertible square matrix, then B has an eigenvalue $\lambda = 0$.

Solution: If B is noninvertible, then the big theorem of linear algebra says that Bv = 0 does not have a unique solution. Reworded, the solution space of B is nontrivial. Therefore there is a nonzero vector v in the solutions space of B. So Bv = 0 = 0v. Thus by definition $\lambda = 0$ is an eigenvalue of B.

Alternatively, we know det $B = 0 = \lambda_1 \dots \lambda_n$. Since the product is 0, we must have one of the $\lambda = 0$.

6. Find the set of vectors \vec{b} such that the following system has an infinite number of solutions.

$$\begin{bmatrix} -1 & 2\\ 1 & -2 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \vec{b}$$

What the vectors \vec{b} where there is a unique solution? What about no solutions?

Solution: There is never a unique solution. Let $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. Then if $b_1 + b_2 = 0$, then the system has infinite solutions. If $b_1 + b_2 \neq 0$, the system is inconsistent and there are no solutions.

7. Let A be a matrix with solution space W. Let B be a matrix, with solution space U, and such that you can row reduce A to B. How does the solution space U compare to W?

Solution: Row reduction preserves the solution space of a matrix. Therefore U = W.

8. Show that $\{(0, 1, 2, 0), (1, 1, 0, 0), (-1, 2, 3, -1), (-3, 0, 0, 0)\}$ is a basis of \mathbb{R}^4 .

Solution: Put the vectors into the columns of a matrix, and take the determinant.

$$\det \begin{bmatrix} 0 & 1 & -1 & -3 \\ 1 & 1 & 2 & 0 \\ 2 & 0 & 3 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} = 6 \neq 0$$

Since the determinant is nonzero, then the columns are independent. In general, 4 independent vectors in \mathbb{R}^4 form a basis, so that our vectors must form a basis.

9. Let W be the set of vectors $(x, y, z, w) \in \mathbb{R}^4$ such that x + y = z + w and 3x - 2z = 0 form a subspace. Find a matrix A such that W is the solution space of A.

Solution: $A = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 3 & 0 & -2 & 0 \end{bmatrix}$

10. Find the general solutions to the following differential equations.

i. $y''' + 4y'' + 4y' = x^2$

ii.
$$y'' + y = \sin(x)$$

iii.
$$y' + \sin(x)y = \sin(x)$$

Solution:

i.
$$y = c_1 e^{-2x} + c_2 x e^{-2x} + c_3 + \frac{1}{12} x^3 - \frac{1}{4} x^2 + \frac{9}{24} x$$

ii. $y = c_1 \cos(x) + c_2 \sin(x) - \frac{1}{2} x \cos(x)$

iii.
$$y = c_1 e^{\cos(x)} + 1$$

11. Calculate the determinant of the following matrix, and determine whether it is invertible or not.

$$\begin{bmatrix} -1 & 2 & -2 & 1 & -2 \\ 3 & 2 & -1 & 2 & 2 \\ 0 & 2 & -1 & 1 & -2 \\ 3 & 2 & 1 & 2 & 2 \\ 1 & 1 & 4 & -2 & 1 \end{bmatrix}$$

Solution: We row reduce this matrix a little to make the determinant easier to compute. Because adding a multiple of one row to another doesn't change the determinant. The 2nd and 4th rows are different by

one number, so we can substract $R_4 - R_2$ to make the 4th row have four 0's. Expand by the new 4th row. Then to compute the resulting 4×4 , notice that the 1st and 3rd rows are off by 1 number. Do the same trick again, and replace R_1 by $R_1 - R_3$. Now you can expand by the first row, and you only have a 3×3 to compute. The answer turns out to be det A = -48, so A is invertible.

12. Find the amplitude and time lag for the function x(t) that satisfies

$$x'' + 4x = 0$$

with x(0) = 1 and x'(0) = 1.

Solution: $\omega_0 = 2, C = \sqrt{5}/2, \delta = 0.232.$

13. Show that the functions e^{r_1x} and e^{r_2x} are independent when $r_1 \neq r_2$.

Solution: These equations are solutions to a linear differential equation, so we can apply the Wronksian.

$$\det \begin{bmatrix} e^{r_1x} & e^{r_2x} \\ r_1e^{r_1x} & r_2e^{r_2x} \end{bmatrix} = (r_2 - r_1)e^{(r_1 + r_2)x} \neq 0$$

Since $r_2 - r_1 \neq 0$, then the Wronskian is nonzero and they are independent.

14. Show that the piecewise function

$$y(x) = \begin{cases} 0 & x < c \\ (x-c)^2 & x \ge c \end{cases}$$

is a solution to the differential equation $y' = 2\sqrt{y}$. Is the piecewise function when c = 2 independent from the function $y = x^2$?

Solution: This piecewise function is a solution to the differential equation since it solves the equation for both x < c and $x \ge c$. Indeed y = 0 is a solution and so is $y = (x - c)^2$. This function is continuous and differentialable since the y = 0 and $y = (x - c)^2$ line up perfectly at x = c. An argument similar to #1 shows that when c = 2, the piecewise function is independent from $y = x^2$. (Let me know if you have questions on this one, it's long to write up.) We cannot apply the Wronskian since we don't have a linear differential equation.

This equation $y' = \sqrt{y}$ doesn't have unique solutions in a neighborhood of x = 0, and these piecewise functions show that in fact it it has infinite solutions for the initial value y(0) = 0. Each piecewise function for c > 0 satisfies the differential equation and the IV y(0) = 0.

15. Consider the differential equation y' = 1. Is y = |x| a solution to this differential equation on all of \mathbb{R} ?

Solution: y = |x| is not a solution on all of \mathbb{R} , since the derivative for negative numbers is y' = -1. However it is a solution if we restrict to the interval $(0, \infty)$, but then it is equal to y = x.

16. Solve the linear system

$$\vec{x}' = \begin{bmatrix} -4 & -1 & 1\\ 2 & 0 & 0\\ -7 & -2 & 2 \end{bmatrix} \vec{x}.$$

Solution:
$$\vec{x} = c_1 e^{-t} \begin{bmatrix} 1\\-2\\1 \end{bmatrix} + c_2 e^{-t} \left(\begin{bmatrix} 1\\-2\\1 \end{bmatrix} t + \begin{bmatrix} 1\\-4\\0 \end{bmatrix} \right) + c_3 \begin{bmatrix} 0\\1\\1 \end{bmatrix}$$

17. Solve the linear system

$$\vec{x}' = \begin{bmatrix} -1 & 1 & 1\\ 1 & -4 & -7\\ -1 & 3 & 5 \end{bmatrix} \vec{x}$$

Solution:
$$\vec{x} = c_1 \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix} + c_2 \left(\begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix} t + \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right) + c_3 \left(\frac{1}{2} \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix} t^2 + \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} t + \begin{bmatrix} -3 \\ -1 \\ 0 \end{bmatrix} \right)$$

18. Find the type and stability of the critical points for the following almost linear system. Use the table on page 520 if you need. Make a sketch of the solutions near each critical point, which you should do without looking in the book.

$$x' = x + xy + y + 1$$
$$y' = x^2 + y^2 - 10$$

Solution: The critical points are $(\pm 1, \pm 3)$. The linearization matrix and the nature of the critical point is listen below.

- i. (-1,3), $\begin{bmatrix} 4 & 0 \\ -2 & 6 \end{bmatrix}$, unstable improper node ii. (-1,-3), $\begin{bmatrix} -2 & 0 \\ -2 & -6 \end{bmatrix}$, stable improper node
- iii. $(3, -1), \begin{bmatrix} 0 & 4 \\ 6 & -2 \end{bmatrix}$, saddle point
- iv. (-3, -1), $\begin{bmatrix} 0 & -2 \\ -6 & -2 \end{bmatrix}$, saddle point

19. Calculate the solutions to the following two IVP's using the Laplace transform.

i.
$$y'' - y = \cos(2x)$$
 $y(0) = 2$ $y'(0) = -1$
ii. $y' - y = t^4$ $y(0) = 1$

Solution:

i.
$$y = \frac{8}{5}e^{-x} + \frac{3}{5}e^{x} - \frac{1}{5}\cos(2x)$$

ii. $y = 25e^{t} - t^{4} - 4t^{3} - 12t^{2} = 24t = 24$

20. For the following linear system, is the critical point at the origin asymptotically stable, stable, or unstable?

$$x' = -x + y$$
$$y' = -3x + y$$

Solution: You get the origin is a center, since both eigenvalues are imaginary. Centers are stable points, but not asymptotically stable.

21. Let W be the set of continuous functions f such that $\int_0^1 f(t) dt = 0$. Show that W is a subspace of the vector space of continuous functions. Is it possible to find a finite set of functions $\{f_1, \ldots, f_n\}$ that form a basis of W?

Solution: Let $f, g \in W$. Then

$$\int_0^1 f(t) + g(t) \, dt = \int_0^1 f(t) \, dt + \int_0^1 g(t) \, dt = 0 + 0 = 0$$

so $f + g \in W$. Similarly if a is a scalar, then

$$\int_0^1 af(t) \, dt = 0$$

as well, so $af \in W$.

There is no finite basis $\{f_1, \ldots, f_n\}$ for W. You can find an infinite amount of independent functions in W. For example $(2t-1)^{2k+1}$ is a function in W for all $k \ge 0$. So 2t-1, $(2t-1)^3$, $(2t-1)^5$, etc, are all in W, and they are independent. You can compute the integral as follows.

$$\int_0^1 (2t-1)^{2k+1} dt = \left(\frac{1}{2(2k+2)}(2t-1)^{2k+2}\right)_0^1 = \frac{1}{2(2k+2)}\left((1)^{2k+2} - (-1)^{2k+2}\right) = 0.$$

You get zero at the end since $(-1)^{2k+2} = (1)^{2k+2}$, which is because 2k + 2 is even. You can show these functions are independent since they are polynomials with increasing degrees.

22. Consider two subspaces W_1 and W_2 of \mathbb{R}^4 . We have seen on Midterm 2 that the intersection $W_1 \cap W_2$ also forms a subspace of \mathbb{R}^4 . If dim $W_1 = 2$ and dim $W_2 = 2$, what are the possible values for dim $(W_1 \cap W_2)$? For an extra challenge, find examples of each possible dimension.

Solution: The possible dimensions for $W_1 \cap W_2$ are 0,1, and 2. An example when dim $(W_1 \cap W_2) = 0$ (i.e. when the subspace itself is 0) is

$$W_1 = \{(x_1, x_2, 0, 0)\}$$
 $W_2 = \{(0, 0, x_3, x_4)\}$

The two subspaces only have vector $\vec{0}$ in common, so $W_1 \cap W_2 = 0$. For dim = 1, you can use

$$W_1 = \{(x_1, x_2, 0, 0)\}$$
 $W_2 = \{(x_1, 0, x_3, 0)\}.$

Then $W_1 \cap W_2 = \{(x_1, 0, 0, 0)\}$ which is 1-dimensional. For dim = 2, you can pick any 2-dimensional subspace W, and let $W = W_1 = W_2$. Thus dim $(W_1 \cap W_2) = \dim W = 2$.

23. Consider 4 vector functions $\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4$ from $\mathbb{R} \to \mathbb{R}^3$. Namely, these vector functions have 3 output functions, like $\begin{bmatrix} e^t \\ e^t \\ 2e^t \end{bmatrix}$ for example. Is it possible for $\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4$ to be independent, or must they be dependent?

Side Note: Contrast this with how 4 normal vectors in \mathbb{R}^3 can never be independent!

Solution: It is possible for 4 vector functions with 3 outputs to be independent. For example consider the following functions.

$$x_1 = \begin{bmatrix} e^t \\ 0 \\ 0 \end{bmatrix} \qquad x_2 = \begin{bmatrix} e^{2t} \\ 0 \\ 0 \end{bmatrix} \qquad x_3 = \begin{bmatrix} e^{3t} \\ 0 \\ 0 \end{bmatrix} \qquad x_4 = \begin{bmatrix} e^{4t} \\ 0 \\ 0 \end{bmatrix}.$$

Since e^t , e^{2t} , e^{3t} , e^{4t} are all independent functions, then the above vector functions are independent as well.

24. Can you find a 2×2 matrix A such that $A^2 = I$? Is there more than one possibility for the matrix A? What are the possible eigenvalues of A? (This problem shows that matrices do not have unique square roots.)

Solution: Some examples are $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ or $A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$. Both of these matrices have the property $A^2 = I$. So there is more than one possibility. In fact, there are an infinite amount of possibilities. Any matrix similar to A also has this property. For example, let $B = PAP^{-1}$ and $A^2 = I$. Then

$$B^2 = PA^2P^{-1} = PIP^{-1} = PP^{-1} = I.$$

Another way to say this is the the identity I has an infinite amount of square roots.

In general, if $A^2 = I$, then the eigenvalues of A must be $\lambda = \pm 1$. Here is the proof. If λ is an eigenvalue of A, then $Av = \lambda v$. Multiplying both sides by A, you get $Iv = \lambda^2 v$. So λ^2 is an eigenvalue of I. But only eigenvalue of the identity I is one. Therefore $\lambda^2 = 1$, and so $\lambda = \pm 1$. We see from the above examples that you can get either $\lambda = 1$ of $\lambda = -1$, so both possibilities for the eigenvalues are achieved.

25. Find the general solution for the following differential equation.

$$y^{(3)} + y'' + y' = x^3$$

Solution: $y = \frac{1}{4}x^4 - x^3 + 6x + c_1 + e^{-x/2}(c_2\cos(\sqrt{3}x/2) + c_2\sin(\sqrt{3}x/2))$