MATH 4242 Final Exam Study Guide

New Topics

• Graph	(2.6)
• Digraph, directed graph	(2.6)
• Connected Graph	(2.6)
• Path	(2.6)
• Circuit	(2.6)
• Independent circuit	(2.6)
• Boundary operator	(2.6, lecture Notes $)$
• Minimization of quadratics	(5.2)
• Closest point in a subspace	(5.3)
• Least squares solution	(5.4)
• Least squares linear and polynomial data fitting	(5.5)
• Linear Transformation, Linear Operators	(7.1) (Exercises 7.1.1, 7.1.19)
• Eigenvalue, eigenvector	(8.2)
• Characteristic polynomial	(8.2)
• Eigenspace	(8.2)
• Algebraic multiplicity	(8.2, lecture notes $)$
• Geometric multiplicity	(8.2, lecture notes $)$
• Eigenvector basis	(8.3)
• Complete Eigenvalue	(8.3)
• Diagonalizable, Diagonalization	(8.3)
• Spectral decomposition	(8.5)
• Jordan chain	(8.6)
• Generalized eigenvector	(8.6)
• Jordan block matrix	(8.6)
• Jordan decomposition	(8.6)
• Matrix Exponential	(10.4, lecture notes $)$
• Exponential Properties	(10.4, lecture notes $)$
• Computation using Jordan form	(10.4, lecture notes $)$

Theorems

• Theorem 2.53	(2.6)
• Theorem 2.54	(2.6)
• Theorem 5.2	(5.2)
• Theorem 5.5	(5.3)
• Theorem 5.7	(5.3)
• Theorem 5.11	(5.4)
• Theorem 7.5	(7.1)
• Theorem 8.3	(8.2)
• Proposition 8.13	(8.2)
• Theorem 8.32	(8.5)
• Theorem 8.35	(8.5)
• Theorem 8.38	(8.5)
• Theorem 8.57	(8.6)
• Lemma 10.2	(10.4, lecture notes $)$
• Formula 10.47	(10.4, lecture notes $)$
• Proposition 10.30	(10.4, lecture notes $)$

Exam 1 Topics

- $m \times n$ matrix
- ij^{th} entry in a matrix A, a_{ij}
- row vector vs. column vector
- zero matrix
- identity matrix
- diagonal matrix
- elementary matrix
- upper/lower triangular matrix
- pivots
- LU decomposition
- nonsingular matrix
- permutation matrix
- permuted LU decomposition
- matrix inverse
- matrix transpose
- Theorem 1.18
- $\bullet\,$ Lemma 1.19 Lemma 1.21
- Theorem 1.28
- $\bullet~$ Lemma 1.32
- symmetric matrix
- Reduced Row Echelon Form (RREF)
- matrix rank
- Interpreting solution from RREF, free variables
- Theorem 1.45
- vector spaces
- \mathbb{R}^n , polynomials, $C^0(\mathbb{R})$
- subspaces, defining properties of subspaces
- linear combination
- $\operatorname{Span}(v_1,\ldots,v_n)$
- Spanning set of a vector space
- linearly independent vectors
- linearly dependent vectors
- Basis of a vector space, basis of a subspace
- Theorem 2.21, Theorem 2.28, Theorem 2.29

- $\bullet\,$ rank of a matrix
- Fundamental Subspaces: kernel, image, cokernel, coimage
- column space, row space, null space
- Proposition 2.41
- Theorem 2.49
- Fundamental Theorem of Linear Algebra (Equivalent Conditions of Invertibility)

Exam 2 Topics

Topics

• inner product on a real vector space	(3.1)
• dot product on \mathbb{R}^n	(3.1)
• weighted dot product \mathbb{R}^n	(3.1)
• inner product on function vector spaces	(3.1)
• norm from an inner product	(3.1)
• Cauchy-Schwartz inequality	(3.2)
• Triangle inequality	(3.2)
• orthogonal vectors	(3.2,4.1)
• angle between two vectors	(3.2)
• norm in general	(3.1,3.3)
• L^1, L^2, L^{∞} norms on \mathbb{R}^n and $C^0[a, b]$	(3.3)
• unit vectors	(3.3)
• positive definite matrix	(3.4)
• quadratic form $x^T K x$	(3.4)
• Gram matrix	(3.4)
• complex number	(3.6)
• complex conjugate	(3.6)
• complex row reduction	(3.6)
• orthogonal and orthonormal bases	(4.1)
• Gram-Schmidt	(4.2)
• alternate Gram-Schmidt	(4.2)
• orthogonal matrix	(4.3)
• QR factorization	(4.3)
• vector orthogonal to a subspace	(4.4)
• orthogonal projection	(4.4)
• orthogonal subspaces	(4.4)
• orthogonal complement W^{\perp}	(4.4)
• cokernel, coimage of a matrix	(2.5)

Theorems

- Cauchy-Schwarz Inequality, Thm 3.5
- Triangle Inequality, Thm 3.9
- $\bullet~$ Theorem 3.27
- Proposition 3.31
- Theorem 3.34
- $\bullet~$ Lemma 4.2
- Proposition 4.4, Theorem 4.5
- $\bullet\,$ Theorem 4.7, Theorem 4.9
- Proposition 4.19, Lemma 4.22, Proposition 4.23
- $\bullet~$ Theorem 4.32
- Proposition 4.40, Proposition 4.44
- $\bullet~$ Theorem 4.45