
Homework 10 Solutions
February 1, 2020

11.15.1. Find
∫∫

S
x cos(x + y) dx dy where S is the triangular region with

vertices (0, 0), (π, 0), and (π, π).

Solution. The region S is bounded by the functions y = 0 and y = x between
x = 0 and x = π. Then the integral is∫∫

S

x cos(x+ y) dx dy =

∫ π

0

∫ x

0

x cos(x+ y) dx dy = −3π/2.

11.15.4. Find
∫∫

S
x2y2 dx dy where S is the bounded portion of the �rst quad-

rant lying between the two hyperbolas xy = 1 and xy = 2, and two straight
lines y = x and y = 4x.

Solution. This region is some kind of warped square which is neither type 1
nor type 2, so we break it up into separate integrals. Find the corners of the
shape, and use the x components in order to �nd the regions.∫∫

S

x2y2 dx dy

=

∫ 1/
√

2

1/2

∫ 4x

1/x

x2y2 dx dy +

∫ 1

1/
√

2

∫ 2/x

1/x

x2y2 dx dy +

∫ √2

1

∫ 2/x

x

x2y2 dx dy

=
7 ln(2)

3

11.15.5. Find
∫∫

S
x2 − y2 dx dy where S is bounded by the curve y = sinx

and the interval [0, π].

Solution. We have∫∫
S

x2 − y2 dx dy =

∫ π

0

∫ sinx

0

x2 − y2 dy dx = π2 − 40/9.

11.15.7. A solid is bounded by the surface z = x2− y2, the xy-plane, and the
planes x = 1 and x = 3. Make a sketch of the solid and compute its volume
by double integration.

Solution. Let me know if you need a sketch in person. The region in the xy-
plane formed by the solid is bounded between y = −x and y = x, and between
x = 1 and x = 3. So the integral is∫ 3

1

∫ x

−x
x2 − y2 dy dx = 80/3.
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11.15.11,14. Interchange the order of integration, and assume such a process

works. Draw a sketch of the region. (11)
∫ 4

1

∫ 2√
x
f dy dx (14)

∫ e
1

∫ ∫
0 log xf dy dx

Solution. (11) The region is bounded by a sideways parabola and a line, and
you only look at the part between x = 1 and x = 4.∫ 4

1

∫ 2

√
x

f dy dx =

∫ 2

1

∫ y2

1

f dx dy

(14) The region is bounded by y = 0 and y = ln(x), in between x = 1 and
x = e. This is when ln(x) hits y = 0 and y = 1.∫ e

1

∫ log x

0

f dy dx =

∫ 1

0

∫ e

ey
f dx dy

11.18.2. Sketch the following region and determine the centroid. S is bounded
by y2 = x+ 3 and y2 = 5− x.
Solution. The shape of S is a oval thing with 2 corners which is bounded by 2
parabolas. The area is∫∫

S

1 dA =

∫ 1

−1

∫ 5−y2

y2−3

1 dx dy = 8/3.

Then

x =
3

8

∫∫
S

x dA = 4

and

y =
3

8

∫∫
S

y dA = 0.

11.22.1ad. Use Green's theorem to evaluate the line integral
∫
C
y2 dx + x dy

when (a) C is the square [0, 2] × [0, 2] and (d) C is the circle of radius 2 and
center at the origin.

Solution. (a) By Green's theorem∫
C

y2 dx+ x dy =

∫ 2

0

∫ 2

0

1− 2y dx dy = −4.

(d) By Green's theorem and symmetry about the x-axis,∫
C

y2 dx+ x dy =

∫∫
B2(0)

1− 2y dx dy = 0.
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11.22.2. If P (x, y) = xe−y
2
and Q(x, y) = −x2ye−y

2
+ 1

x2+y2
, evaluate the line

integral
∫
C
P dx+Qdy where C is the boundary of the square [−a, a]× [−a, a].

Solution. Let F = (P,Q). Note that

F = ∇(x2e−y
2

)/2 +

(
0,

1

x2 + y2

)
.

Thus ∫
C

F · ds = 0 +

∫
C

(
0,

1

x2 + y2

)
· ds

since conservative vector �elds integrate to 0 around closed curves. Doing the
second integral manually, yields∫

C

(
0,

1

x2 + y2

)
· ds = 0

because integrating one side is the negative of the integral of the other side, if
you write it out. Thus the total integral is 0.

11.22.4. Given two scalar �elds u and v that are continuously di�erentiable
on an open set containing the circular disk R whose boundary is the circle
x2+y2 = 1, de�ne two vector �elds f, g by f = (v, u) and g = (ux−uy, vx−vy).
Find

∫∫
R
f · g dx dy if it is known that on the boundary of R we have u = 1

and v = y.

Solution. By Green's theorem:∫∫
R

f · g dx dy =

∫∫
vux − vuy + uvx − uvy dx dy

=

∫∫
R

(uv)x − (uv)y dx dy

=

∫
∂R

(uv, uv) · ds

=

∫
∂R

(y, y) · ds

=

∫ 2π

0

(sin(t), sin(t)) · (− sin(t), cos(t)) dt

= −π.

11.22.5. If f and g are continuously di�erentiable in an open connected set
S in the plane, show that

∫
C
f∇g · ds = −

∫
C
g∇f · ds
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Solution. By de�nitions, product rule, and Green's theorem:∫
C

f∇g + g∇f · ds =

∫
C

(fgx + gfx, fgy + gfy) · ds

=

∫
C

((fg)x, (fg)y) · ds

=

∫∫
R

(fg)xy − (fg)xy dx dy = 0

11.22.7. If f = (Q,−P ), show that∫
C

P dx+Qdy =

∫
C

f · n ds.

Solution. By de�nitions:∫
C

f · n ds =

∫
C

f(α(t)) · n(t)||α′(t)|| dt

=

∫
C

f(α(t)) · (y′(t),−x′(t)) dt

=

∫
C

Q(α(t))y′(t) + P (α(t))x′(t) dt

=

∫
C

P dx+Qdy.

11.22.8ab. Let f and g be scalar �elds with continuous �rst and second order
partial derivatives on an open set S in the plane. Let R denote a region in S
whose boundary is a piecewise smooth Jordan curve C. Prove the following
identities. (a)

∫
C
∇g · n ds =

∫∫
R
∇2g dx dy (b)

∫
C
f(∇g · n) ds =

∫∫
R
f∇2g +

∇f · ∇g dx dy
Solution. (a) By de�nitions, the previous problem, and Green's theorem:∫

C

∇g · n ds =

∫
C

(gx, gy) · n ds

=

∫
C

−gy dx+ gx dy

=

∫∫
R

gxx + gyy dx dy.
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(b) By de�nitions, the previous problem, and Green's theorem:∫
C

f(∇g · n) ds =

∫
C

(fgx, fgy) · n ds

=

∫
C

−fgy dx+ fgx dy

=

∫∫
R

f(gxx + gyy) + fxgx + fygy dx dy.

11.25.3. A connected plane region with exactly one hole is called doubly
connected. If P and Q are continuously di�erentiable on an open doubly
connected region R and if Py = Qx everywhere in R, how many distinct values
are possible for line integrals

∫
C
P dx + Qdy taken around piecewise smooth

Jordan curves in R?

Solution. If the curve C does not go around the hole, then
∫
C

(P,Q) · ds = 0
by Green's theorem. If C is any simple closed curve going around the hole,
we claim that C only goes around the hole once. Else, the intermediate value
theorem implies that the curve crosses itself somewhere. (Note: This is wildly
unrigorous, but given that we haven't de�ned what a hole is, I'll leave it
unrigorous.)

So let I =
∫
C
P dx + Qdy. We claim that the integral around any other

curve in the same direction is also I. (Otherwise it is just −I.).
Take any two simple Jordan curves C1, C2 in R. In order to prove that the

integrals around these curves are the same, we need to apply Green's theorem.
However the theorem proved in the book holds only for when C2 is contained
in the interior of the region inside of C1. This isn't true for two general curves
(they can intersect in any number of ways), so we have to make a C3 inside
C2 and C1 and then show that the integrals around C1 and C2 are both the
same as that of C3. This will be our strategy.

So we claim that there is a simple Jordan curve C3 contained in the interior
of both C1 and C2. Since R is open, there exists an open ball around every
point in R also contained in R. Assume the hole in R contains the origin
WLOG. De�ne C ′1 to be the curve de�ned as follows. If α1 : [0, 1]→ R2 de�ne
α̃1 : [0, 1]→ R2 by α̃1(t) = (1− ε)α(t). Since R is open and [0, 1] is closed and
bounded, we can �nd a �xed ε small enough such that α̃1(t) ∈ R. (I believe
this is by something called the Lebesgue number lemma.) Do the same process
to form α̃2. Then take α3 to be the curve

α3(t) =

{
α̃1(t) |α̃1(t)| ≤ |α̃2(t)|
α̃2(t) |α̃′2(t)| ≤ |α̃1(t)|

.
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This is a piecewise Jordan curve in general and is continuous when α1 and α2

go around in a circle at the same rate, which we can assume WLOG (if not,
just change the speeds). Then α3 de�nes the curve C3 in the interior of C1

and C2. (Actually I think this doesn't hold if α1 makes a zig-zag shape but
you get the idea.)

Long story short, since R is open, we can �nd a curve C3 inside of C1 and
C2. Then Green's theorem in the book implies that

∫
C1−C3

P dx + Qdy = 0

and
∫
C2−C3

P dx+Qdy = 0. Therefore∫
C1

P dx+Qdy =

∫
C3

P dx+Qdy =

∫
C2

P dx+Qdy.

So in total we can have up to 3 values; 0, I, and −I (assuming I 6= 0).

11.25.4. Solve 11.25.3 for triply connected regions, that is, for connected plane
regions with exactly 2 holes.

Solution. I'm not going to go through the same argument as before where I
show that the curves agree, I'm just going to list all the cases. First, if the
curve goes around no holes, then the integral is 0. If it goes around one hole,
then it will be some number ±I1, and likewise for ±I2. If it goes around both
holes, since it is simple, then it cannot cross itself so it goes around the holes
in the same direction so we get ±(I1 + I2). So we can have up to 7 possible
values.

11.25.5ab. Let P and Q be two scalar �elds which have continuous derivatives
satisfying Py = Qx everywhere in the plane except at three points. Let C1,
C2, and C3 be nonintersecting circles centered at these points. Let Ik =∫
Ck
P dx + Qdy. Assume that I1 = 12, I2 = 10, and I3 = 15. (a) Find the

integral around a �gure 8 C containing C1 and C3. (b) Draw another closed
curve Γ along which

∫
Γ
P dx+Qdy = 1.

Solution. (a) Let α be the curve C − C1 + C3. By Green's theorem∫
α

P dx+Qdy = 0.

But therefore ∫
C

P dx+Qdy = I1 − I3 = 12− 15 = −3.
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(b) Note that (3)(15)−(2)(10)−(2)(12) = 1. Let Γ be a curve that goes around
C1 2 times clockwise, goes around C2 2 times clockwise, and goes around C3

3 times counterclockwise. Then integrating Γ + 2C1 + 2C2 − 3C3 will yield 0
by Green's theorem. But then∫

Γ

P dx+Qdy = −2I1 − 2I2 + 3I3 = 1

as desired.
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