Homework 11 Solutions February 1, 2020

11.28.3. Express the integral over the region $\{(x, y) | a^2 \leq x^2 + y^2 \leq b^2\} \subset \mathbb{R}^2$ as a iterated integral in polar coordinates.

Solution. This region is an annulus with inner radius a and outer radius b . Name the region S. Then

$$
\iint_S 1 dA = \int_0^{2\pi} \int_a^b r dr d\theta.
$$

11.28.8. Transform the integral $\int_0^1 \int_{x^2}^x (x^2 + y^2)^{-1/2} dy dx$ into polar and compute the value.

Solution. The region is below the line at angle $\pi/4$ and the radial component is bounded by $y = x^2$, which has polar equation $r \sin \theta = r^2 \cos^2 \theta$, so that $r = \tan \theta / \cos theta$. Then the integral is

$$
\int_0^{\pi/4} \int_0^{\tan \theta / \cos \theta} r/r \, dr \, d\theta = \int_0^{\pi/4} \frac{\tan \theta}{\cos \theta} \, d\theta = \sqrt{2} - 1.
$$

11.28.9. Repeat the exercise above for $\int_0^a \int$ $\sqrt{a^2-y^2}$ $\int_0^{\sqrt{a^2-y^2}} x^2 + y^2 dx dy.$

Solution. The region in question is the first quadrant of a disc of radius a centered at the origin. In polar this is

$$
\int_0^{\pi/2} \int_0^a r^2 dr d\theta = \int_0^{\pi/2} \frac{a^3}{3} d\theta = \frac{a^4 \pi}{8}.
$$

11.28.14. Find a suitable linear transformation to compute

$$
\iint_S (x-y)^2 \sin^2(x+y) \, dx \, dy
$$

where S is the parallelogram $(\pi, 0)$, $(2\pi, \pi)$, $(\pi, 2\pi)$, and $(0, \pi)$.

Solution. Pick $u = x + y$ and $v = x - y$. Inverting this linear transformation, we see that $x = (u + v)/2$ and $y = (u - v)/2$. Thus $J(u, v) = 1/2$ and the inverse image of the parallegram is the square bounded by $u = \pi$, $u = 3\pi$, $v = -\pi$, and $v = \pi$. Then the integral is

$$
\iint_{S} (x - y)^2 \sin^2(x + y) dx dy = \int_{-\pi}^{\pi} \int_{\pi}^{3\pi} v^2 \sin^2(u) du dv
$$

$$
= \frac{2\pi^4}{3}.
$$

11.28.16abc. Let $r > 0$, and let $I(r) = \int_{-r}^{r} e^{-u^2} du$. (a) Show that $I^2(r) =$ $\iint_{R} e^{-(x^2+y^2)} dx dy$ where $R = [-r, r]^2$. (b) If C_1 and C_2 are circular disks inscribing and circumscribing R , show that the integrals on these discs bound $I^2(r)$. (c) Express the integrals over C_1 and C_2 in polar coordinates and use (b) to deduce that $I(r) \to \sqrt{\pi}$ as $r \to \infty$.

Solution. (a) Since e^{-u^2} is smooth on R, then the product of the integrals is the iterated integral of the product of the integrands.

$$
\left(\int_{-r}^{r} e^{-u^{2}} du\right)^{2} = \left(\int_{-r}^{r} e^{-x^{2}} dx\right) \left(\int_{-r}^{r} e^{-y^{2}} dy\right) = \iint_{R} e^{-(x^{2}+y^{2})} dx dy.
$$

(b) Let T be a bounded region containing C_1 , R, and C_2 . Let $f_S(x, y) =$ $e^{-(x^2+y^2)}\chi_S(x,y)$, where

$$
\chi_S(x, y) = \begin{cases} 1 & (x, y) \in S \\ 0 & \text{else} \end{cases}
$$

and S is any set. Then $\iint_T f_R(x, y) dx dy = \iint_R f(x, y) dx dy$ and similarly for C_1 and C_2 . But note that $f_{C_1} \leq f_R \leq f_{C_2}$ on T. Since integrating positive functions preserves inequalities, then integrals on C_1 and C_2 bound that of R as desired.

 (c) By the squeeze theorem and part (a) , it suffices to show that

$$
\lim_{r \to \infty} \iint_{C_r} f(x, y) \, dx \, dy = \pi.
$$

Indeed transforming the integral into polar coordinates shows that

$$
\lim_{r \to \infty} \iint_{C_r} f(x, y) \, dx \, dy = \lim_{r \to \infty} \int_0^{2\pi} \int_0^r e^{-r_0^2} r_0 \, dr_0 \, d\theta
$$

$$
= 2\pi \lim_{r \to \infty} \left(-\frac{1}{2} e^{-r^2} + \frac{1}{2} \right) = \pi
$$

since $e^{-x^2} \to 0$ as $x \to \infty$.