
Homework 12 Solutions
February 1, 2020

11.34.1,4. Evaluate two triple integrals. (1)
∫∫∫

S
xy2z3 dx dy dz where S is

the solid bounded by z = xy, y = x, x = 1, and z = 0. (4)
∫∫∫

S
x2

a2
+ y2

b2
+ z2

c2

where S is the region bounded by the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1.

Solution. (1) The integral can be evaluated as follows.

∫∫∫
S

xy2z3 dx dy dz =

∫ 1

0

∫ x

0

∫ xy

0

xy2z3 dz dy dx

=

∫ 1

0

∫ x

0

1

4
x5y6 dy dx

=
1

28

∫ 1

0

x13 dx =
1

364

(4) We use a change of variables x = au, y = bv, z = cw. This has Jacobian
abc, and the preimage of the region under the transformation is the unit sphere.
Then we can write the integral in spherical coordaintes. Therefore by the
change of variables theorem:

∫∫∫
S

x2

a2
+
y2

b2
+
z2

c2
dx dy dz = abc

∫∫∫
B(1)

u2 + v2 + w2 du dv dw

= abc

∫ π

0

∫ 2π

0

∫ 1

0

ρ2(ρ2 sinϕ) dρ dθ dϕ

= 2abcπ

(∫ 1

0

ρ4 dρ

)(∫ π

0

sinϕdϕ

)
=

4abcπ

5

11.34.6,8. For the following integrals, change the order of integration and
describe the region of integration S. (6)

∫ 1

0

∫ 1−x
0

∫ x+y
0

dz dy dx and

(8)
∫ 1

0

∫ 1

0

∫ x2+y2
0

1 dx dy dx

Solution. (6) The region is the graph of the plane z = x+ y over the triangle
formed by x = 0, y = 0, and y = 1− x in the xy-plane. We can rearrange the
integral as follows, for example.∫ 1

0

∫ 1−x

0

∫ x+y

0

dz dy dx =

∫ 1

0

∫ 1

z

∫ x−z

0

1 dy dx dz

1



(8) The region is bounded by the paraboloid z = x2 + y2 and is above unit
square. In order to change the order of integration, we need multiple integrals
since the bounding function of the region is piecewise with respect to x or y.

∫ 1

0

∫ 1

0

∫ x2+y2

0

1 dx dy dx =

∫ 1

0

∫ x2

0

∫ 1

0

1 dy dz dx+

∫ 1

0

∫ 1

x2

∫ 1

√
z−x2

1 dy dz dx

11.34.9. Show that∫ x

0

∫ v

0

∫ u

0

f(t) dt du dv =
1

2

∫ x

0

(x− t)2f(t) dt.

Solution. The integral is over a region bounded by the plane t = u, and above
the triangle bounded by u = v, v = 0, and u = c in the uv-plane. Changing
the order of integration to dv du dt, we obtain the following.∫ x

0

∫ v

0

∫ u

0

f(t) dt du dv =

∫ x

0

∫ x

t

∫ x

u

f(t) dv du dt

=

∫ x

0

∫ x

t

f(t)x− f(t)u du dt

=

∫ x

0

1

2
f(t)x2 − f(t)xt+

1

2
f(t)t2 dt

=
1

2

∫ x

0

f(t)(x− t)2 dt

11.34.10. Evaluate the following integral by transforming it into cylindrical
coordinates:

∫∫∫
S
x2 + y2 dx dy dz where S is the solid bounded by the surface

x2 + y2 = 2z and the plane z = 2.

Solution. The region is above the paraboloid z = (x2 +y2)/2 and below z = 2.
This gives the z-bounds. The projection of the region to the xy-plane is a
circle of radius 2. Therefore the transformation is∫∫∫

S

x2 + y2 dx dy dz =

∫ 2π

0

∫ 2

0

∫ 2

r2/2

r2(r) dz dr dθ

= π

∫ 4

0

2r3 − 1

2
r5 dr =

16π

3
.

11.34.15. Transform the following integral into spherical coordinates:∫∫∫
S

((x− a)2 + (y − b)2 + (z − c)2)−1/2 dx dy dz

where S is a sphere of radius R centered at the origin, and (a, b, c) it outside
the sphere.
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Solution. By changing basis using a rotation matrix, it su�ces to let (a, b, c) =
(0, 0, λ), where λ = ||(a, b, c)||. Note that a rotation matrix has determinant
1, so that the Jacobian contributes no scaling factor.

Now by transformation of spherical coordinates:∫∫∫
S

(x2 + y2 + (z−λ)2)−1/2 dx dy dz

=

∫ 2π

0

∫ π

0

∫ R

0

ρ2 sin(ϕ)√
ρ2 − 2ρλ cos(ϕ) + λ2

dρ dϕ dθ

= 2π

∫ R

0

∫ 1

−1

ρ2√
ρ2 + λ2 + 2ρλu

du dρ

= 2π

∫ R

0

ρ

2λ

(√
λ2 + 2λρ+ ρ2 −

√
λ2 − 2λρ+ ρ2

)
dρ

= 4π

∫ R

0

ρ2

λ
dρ =

4πR3

3λ
.

11.34.31. Let Sn(a) denote the set of points with
∑

i |xi| ≤ a. Denote the
volume by Vn(a) =

∫
Sn(a)

1 dx1 . . . dxn. (a) Prove that Vn(a) = anVn(1). (b)

For n ≥ 2, express the integral Vn(1) as an iteration of a one dimensional
integral and an n− 1 integral and show that

Vn(1) = Vn−1(1)

∫ 1

−1
(1− |x|)n−1 dx =

2

n
Vn−1(1).

(c) Use the previous parts to deduce that Vn(a) = 2nan

n!
.

Solution. (a) Consider the change of variables ui = axi. The Jacobian is an

and the preimage of Sn(a) is Sn(1). Therefore

Vn(a) =

∫
Sn(a)

1 du1 . . . dun = an
∫
Sn(1)

1 dx1 . . . dxn = anVn(1).

(b) Taking a constant value of x1, the cross section of Sn(1) is Sn−1(1− |x1|)
since we can rearrange the equation

|x2|+ · · ·+ |xn| ≤ 1− |x1|.

Doing the x2, . . . , xn integrals �rst, the iterated volume integral becomes

Vn(1) =

∫ 1

−1
Vn−1(1− |x1|) dx1 =

∫ 1

−1
Vn−1(1)(1− |x1|)n−1 dx1.
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(c) Now we compute
∫ 1

−1(1− |x|)
n−1 dx. By breaking up the integral over two

intervals:∫ 1

−1
(1− |x|)n−1 dx =

∫ 0

−1
(1 + x)n−1 dx+

∫ 1

0

(1− x)n−1 dx =
2

n
.

Therefore we have the recursive formaula Vn(1) = 2
n
Vn−1(1). Since V1(1) = 2,

then Vn(1) = 2n

n!
, so that Vn(a) = 2nan

n!
. Notice that limn→∞ Vn(a) = 0 since n!

grows faster than (2a)n. Intuitively this is confusing, but it says that the solid
Sn(1) is an increasingly small portion of the unit n-cube [0, 1]n. Pretty weird.

12.6.2. Compute the area of the region cut from the plane x + y + z = a by
the cylinder x2 + y2 = a2.

Solution. Name the region S. Since the z values of the points of S lie on the
plane z = a− x− y and the projection of the region down to the xy-plane is
a circle of radius a, one possible parametrization is

Φ(r, θ) = (r cos(θ), r sin(θ), a− r cos(θ)− r sin(θ)).

The magnitude of the normal can be computed as ||n|| = r
√

3. Therefore
the area of S is ∫∫

S

1 dS =

∫ 2π

0

∫ a

0

r
√

3 dr dθ = π
√

3a2.

12.6.3. Compute the surface area of the portion of the sphere x2+y2+z2 = a2

lying within the cylinder x2 + y2 = ay, where a > 0.

Solution. Similarly, the x, y values of the parametrization will be determined
by the circle the cylinder forms in the xy-plane. This circle is a circle of radius
a/2 centered at (0, a/2) since x2 + y2 = ay can be rearranged to

x2 + (y − a/2)2 = a2/4

by completing the square. The z-value of the cylinder is determined by the
sphere, so we have z = ±

√
a2 − x2 − y2. Taking the positive square root, we

can multiply the area by 2 at the end. The parametrization is

Φ(x, y) = (x, y,
√
a2 − x2 − y2)

so that

||n|| =

√
x2

a2 − x2 − y2
+

y2

a2 − x2 − y2
+ 1 =

a√
a2 − x2 − y2

.
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The domain of the parametrization T is the circle above. Now compute the
area integral. Note that the radius of a circle at an angle θ ∈ [0, π] is deter-
mined by the equation x2 + y2 = ay, which can resolve in polar coordinates as
r = a sin θ. ∫∫

S

1 dS =

∫∫
T

2a√
a2 − x2 − y2

dx dy

=

∫ π

0

∫ a sin θ

0

2ar√
a2 − r2

dr dθ

=

∫ π

0

2a2 − 2a
√
a2 − a2 sin2(θ) dθ

= 2a2
∫ π

0

1− | cos(θ)| dθ = 2a2(π − 2)

12.6.5. A parametric surface S is described by

r(u, v) = (u cos(v), u sin(v), u2)

where 0 ≤ u ≤ 4 and 0 ≤ v ≤ 2π. (a) Show that S is a portion of a surface
of revolution. (b) Compute the fundamental vector product ∂r/∂u × ∂r/∂v
in terms of u, v. (c) The area of S is π(65

√
65 − 1)/n where n is an integer.

Compute n.

Solution. (a) This region is a surface of revolution since for each constant z
value, the corresponding curve is a circle. Here the function we are revolving
is f(u) = u2.

(b) By the formula on page 429 in Apostol, the fundamental vector product is

∂r

∂u
× ∂r

∂v
= (−2u2 cos(v),−2u2 sin(v), u).

(c) The area is computed by the integral

a(S) = 2π

∫ 4

0

u
√

1 + 4u2 du =
2π

12
(65
√

65− 1).

Therefore n = 6.

12.6.7. Compute the area of the portion of the conical surface x2 + y2 = z2

which lies between the two planes z = 0 and x+ 2z = 3.
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Solution. The intersection of the cone with the plane x+2z = 3 occurs for the
following condition on x, y. Substituting z = (3−x)/2 into the cone equation,
we obtain

x2 + y2 =
(3− x)2

4
.

This is clearly a conic section and therefore will be some kind of ellipse. Re-
arrange the equation to obtain that the ellipse has the form

(x+ 1)2

4
+
y2

3
= 1.

The parametrization of the surface is

Φ(x, y) = (x, y,
√
x2 + y2)

where x, y are in the ellipse above. Since we are graphing a function, the
normal has the form

n =

(
x√

x2 + y2
,

y√
x2 + y2

,−1

)

with magnitude ||n|| =
√

2. Therefore a(S) =
√

2a(E) where E the above
ellipse. We conclude that a(S) = 2π

√
6.

12.10.1. Let S denote the hemisphere x2 + y2 + z2 = 1 with z ≥ 0. Let
F (x, y, z) = (x, y, 0). Let n be the unit outward normal of S. Compute∫∫

S
F · n dS using (a) a spherical parametrization and (b) a parametrization

using the function z =
√

1− x2 − y2.
Solution. (a)

12.10.5. Given a surface S which is a graph of a function f(x, y) over a domain
T , prove a simpler formula for the integral

∫∫
F · dS.

Solution. Given a parametrization of a surface Φ(x, y) = (x, y, f(x, y) where
(x, y) ∈ T , then the normal vector is given by

n =

(
1, 0,

∂f

∂x

)
×
(

0, 1,
∂f

∂y

)
=

(
−∂f
∂x
,−∂f

∂y
, 1

)
.

If F = (P,Q,R), then by de�nition∫∫
S

F · n dS =

∫∫
T

−P ∂f
∂x
−Q∂f

∂y
+Rdx dy.
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12.10.6. Prove some more identities in the situation of 12.10.5.

Solution. (a) Given the normal n in 12.10.5, its magnitude is

||n|| =

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

so that for a scalar function ϕ, by de�nition∫∫
S

ϕ(x, y, z) dS =

∫∫
T

ϕ(x, y, f(x, y))

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dx dy.

(b) Note that in the problem x = x, y = y, and z = f(x, y). By de�nition in
Apostol (actually by de�nition of the wedge product), we have that

dy ∧ dz =
∂(y, z)

∂(x, y)
dx dy = det

[
0 ∂f

∂x

1 ∂f
∂y

]
dx dy = −∂f

∂x
dx dy.

Therefore ∫∫
S

ϕdy ∧ dz = −
∫∫

T

ϕ(x, y, f(x, y))
∂f

∂x
dx dy.

(c) Similarly to the previous exercise,

dz ∧ dx = −∂f
∂y

dx dy

so that by de�nition∫∫
S

ϕdz ∧ dx = −
∫∫

T

ϕ(x, y, f(x, y)) dx dy.

12.10.7. If S is the surface of a sphere of radius a centered at the origin,
compute the value of∫∫

S

xz dy ∧ dz + yz dz ∧ dx+ x2 dx ∧ dy.

Use the outward normal.

Solution. Using the parametrization

Φ(θ, ϕ) = a(cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ))

we see that the normal vector is

n = a2 sin(ϕ)(cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ)).

7



Therefore the integral becomes∫∫
S

xz dy ∧ dz + yz dz ∧ dx+ x2 dx ∧ dy

= a4
∫ π

0

∫ 2π

0

sin(ϕ)(cos2(θ) sin2(ϕ) cos(ϕ) + sin2(θ) sin2(ϕ) cos(ϕ)

+ cos2(θ) sin2(ϕ) cos(ϕ)) dθ dϕ

= 3a4π

∫ 2π

0

sin(ϕ)3 cos(ϕ) dϕ = 0.
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