Homework 13 Solutions
February 1, 2020

12.13.1. Transform the surface integral of V x F where F(x,y, z) = (2, vy, x2)
over the hemisphere of 22 + y? + 22 = 1 with 2 > 0 into a line integral, and
then evaluate the integral.

Solution. Call the surface S. The boundary of S is a circle of radius 1 in the
xy-plane centered at the origin. By Stoke’s theorem,

//SVXF- dS = /astS = /OQﬂ(siHZ(t),cos(t) sin(t), 0)-(— sin(t), cos(t), 0) dt.

The integral evaluates to 0.

12.13.4. Compute the integral of V x F where F' = (zz,—y,2%y) over the
surface S which sonsts of three faces not in the zz-plane of the tetrahedron
bounded by the three coordinate planes, and the planes 3x +y + 3z = 6. The
normal is outward.

Solution. The boundary of S is the intersection of the plane with the zz-plane,
which is when y = 0. Thus it is the triangle formed by 3x+3z = 6, or z = 2—x,
x =0, and z = 0. The integral can be computed using Stoke’s theorem

//VxF«dS:/ F . ds
5 s

_ /2(0,0,0) : (O,O,l)dt+/2(0,0,0) (~1,0,0) dt

+/2(t(2—t),0,0> (1,0, —1)dt
=4/3

12.13.5. Use Stoke’s theorem to show that [,,(y, z, %) - ds = ma®v/3 where C
is the curve of intersection between 2% + >+ 22 =a*> and v +y + 2 = 0.

Solution. First, note that V x F' = (—1,—1,—1). Then to apply Stoke’s
theorem, we can choose any surface S with C' as a boundary and evaluate the
integral of (—1,—1,—1) over S. Let S be the portion of the plane z+y+2z =0
inside the curve. Let T be the projection of S onto the zy-plane. Then a
parametrization of S is ®(z,y) = (z,y, —x — y) with domain 7". The normal
is therefore also n = (=1, —1,—1) by the parametrization of a graph formula.



To find T substitute z = —x — y into the equation for the sphere, to obtain
22 +y? + zy = a®/2. The relevant integral is

/[9(—1,—1,—1) . dS = //T(—1,—1,_1) . %(_1’_1’_1)@@ — V3a(S)

Since S divides the sphere in half, then it is the same area as 2% + y* = a® by
a rotation. The area of this circle is 7a?, so that the integral is Ta?v/3.

12.13.6. Show that [.(y+ 2)dz+ (2 +2)dy + (x +y) dz = 0 where C'is the
curve of intersection of the cylinder 22 + 3% = 2y and the plane y = 2.

Solution. Using the same method as last exercise, we find a surface is C' as
a boundary and integrate V x F over that surface S. We pick S to be the
portion of the plane z = y inside of 2%+ y? = 2y. The normal is n = (0, —1, 1)
and V x F = (0,0,0), so therefore [[,0- dS =0 as desired.

12.13.11. If r = (z,y,2) and (P,Q, R) = a X r where a is a constant, show

that
/C(P,Q,R)ds:Q//Sa-ndS

where C' is a curve bounding a surface S and n is a suitable normal.

Solution. By Stoke’s theorem,

[eanis= [[v<p.or) ns

Therefore it suffices to calculate the curl of (P, Q, R). Let a = (a,b,c), at the
risk of bad notation.

Vx(P,Q,R)=V x(axr)
=V x (bz — cy,cx — az,ay — bx)
=(a+ab+bc+c)=2a

Then the result follows.
12.13.13. (a) Use the formula for differentiating a product to show that

O (OX\ 0 ( 90X\ _0OpdX 0JpoX
ou pav ov p@u C Qu v Ovou’

(b) Now let p(u,v) = P(X,Y, Z) where X,Y, Z are functions of u,v. Compute

g—z and g—i’ by the chain rule and use part (a) to deduce a relation.



Solution. (a) By the product rule and equality of mixed partials in this case:

a(ax) a(ax) PX | poX  PX  Opox

aw\Pav ) a0 \Pau ) " Pouoe T ouoe  Povou  ow ou
_0pdX 9poX
 Ou Ov ov Ou

(b) The chain rule implies that

9X  ax
[0 o] —[22 o2 0P & by
ou  Ov 0X 9y 07 g% g%

S o

Doing out the matrix multiplication and plugging into the right hand side of
part (a), we obtain:

OpOX pOX _ (= 0P X\ (AX\ (= 0P OX,) (0X
ou Ov v du 0X,; Ou ov 0X; Ov ou
_OPOYOX O0PO0ZOX OPOYOX O0P0OZOX

SO ou v  9:0udv  9Z 0w ou  9Z 0w du
_OPAX,Y) | OPA(X,Z)
Y O(u,v) 07 O(u,v)

Combining with part (a), we obtain a proof of (12.29).

12.15.1ac. For each of the following vector fields, determine the Jacobian
matrix and compute the curl and divergence. (a) F' = (22 +yz,y*+xz, 22 +ay)
(c) F = (= +sin(y), —= + z cos(y), 0)

2c  z oy
Solution. (a) DF = | z 2y x|,V xF=(0,0,0),V-F=2x+y+ z).
Yy x 2z
cos(y) 1 0
(c) DF = |—zsin(y) —1 cos(y)|, Vx F =(1,1,0), V- F = —zsin(y).
0 0 0

12.15.2. If R = (z,y,2) and r = ||R||, compute V x f(r)R, where f is a
differentiable function.

Solution. By the formula on page 446, we have

VX f(r)R=f(r)(VxR)+Vf(r)xR

1
:O+—a—fR><R:0
ror
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12.15.4. Again let R = (z,y,2) and r = ||R||. Find all integers n such that
V- (r"R) =0.
Solution. Begin by calculating V - (1" R).

=3r" + n(z® + y* + 22)r"?
=3 +n)r"
From here it is clear that only when n = —3 is expression equal to 0.
12.15.8. Prove the identity
V- (FxG)=G-(VxF)—F-(VxG).
Solution. This identity is proved by writing out each side entrywise.

V- (F X G) =V- (F2G3 — FgGQ, F3G1 — F1G3,F1G2 — FQGl)

- 6F2 0(;3 8F3 8G2
BT B T e
aFg 8G1 8F1 8G3
hialtc] For—r o2l — 2
+8yG1+ > oy 3yG3 Yoy
OF, Gy OF 0G,
L T = P

On the other hand:

oF; O0F, 0Fy O0F; 0F, O0OF

G(VXF)—F(VXG):(G17G2>G3)(8y o 837 0z N 8:)@’ ox B 3y

)

0Gs  0G, 0Gy 0G5 0Go 8G1)

(R, By, Fy) - _ _ _
(1, £, ) <8y 0z 0z dx ’ Ox

R 0Gs  OF, 9Gs
_8x03 FQa _axGnga
0F3 0G; O0F OGS
) o — (. — 2
+ ay G+ 38y oy G 13y
or 0Gy 06 0G,
T et G B

12.15.11. Let V(z,y) = (y¢, z¢) where ¢ > 0. Let r(z,y) = (x,y). Let R be
the plane region bounded by a piecewise smooth Jordan curve C. Compute
V-(Vxr),and Vx (V xr). Use Green’s theorem to show that [,V xr-ds = 0.
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Solution. First we compute V xr, where we view them in R?® with z-component
0. Then

V xr=(0,0,y" — 1),
Then V- (Vxr)=04+04+0=0and V x (V xr) = (c+ 1)(y%2%0) =
(¢ 4+ 1)V. We apply Green’s theorem (well really Stoke’s theorem), so that
JoVxrdS = [[;V x(V xr)dS. The latter integral is computed as follows,
since S is a flat surface with unit normal n = (0,0, 1).

QKL@+1XV%(Qalﬁ%E:[AOdSZO‘

12.21.1. Let S be the surface of then unit cube 9[0,1]>. Let n be the unit
outer normal of S. If F' = (22,42, 2?), use the divergence theorem to evaluate
the surface integral [[ F'-ndS. Verify the result by computing the integral
directly.

Solution. By the divergence theorem,

[LFWMS:/%Lm2@+y+@dV:3

Manually, the integrals on the three sides on the coordinate planes are 0 since
the normal is perpendicular to the parametrization for the side. On the three
other sides, F'-n =1 so that you add up the areas of the 3 sides and you get
3.

12.21.2. The sphere of radius 5 centered at the origin is intersected by the
plane z = 3. The smaller portion forms a solid V' closed by a surface Sy, made
up of the sphere part S; and the plane part S;. Compute

//S(xz,yz, 1)ds

for (a) S =51, (b) S =S5, and (¢) S = 5. Solve for part (c¢) using the parts
of (a) and (b), and also by the divergence theorem.

Solution. (a) Note that the surface S; is the graph of z = /25 — 22 — y? over
the circle 22 + y? < 16 in the plane. Therefore

//Sl(a:z,yz,l). dsS = //T(:cz,yz,l) (2/)2,y/21) de dy

—//m2+y2+1dxdy
T

4
= 27r/ (r? + 1)rdr = 1447w
0
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(b) Similarly, the planar region is the graph of 2 = 3 over the region x*+y* < 16
in the plane, so that with upward normal, the integral can be computed.

// (:cz,yz,l)dS://(a:z,yz,l)~(0,0,1)dxdy://1d$dy:167r
So T T

(c) On the one hand, the outward normal on Sy means that

//F-dS://F-dS—//F-dS:1447r—167r:1287r.
So S1 Sa

Let W be the interior of Sy. Then on the other hand, the divergence theorem

implies that
// F-dS:/// 2z dz dx dy
So w

N
:/// 2zdz dz dy
TJ3
://16—x2—y2dxdy
T
4
:27T/ r(16 — r?) dr = 1287
0

12.21.4,6. Let g—i = Vf -n and assume a region V in R?® has boundary S
which is a closed surface. Then prove the following identities. (4) [, g—j; s =

[ff, V*fdxdydz and (6) [[g fo2dS = [[[, fV?g+ Vf-Vgdrdydz
Solution. (4) By the divergence theorem:

//a—de://Vf~ dS:/// V-Vfdxdydz:// V2 fdrdydz.
s on s 1% 1%
(6) Again by the divergence theorem and the divergence of a product formula:
[[ 25— [[ 9y a
S on s
= /// V- (fVg)dxdydz
v
= /// fV2g+Vf-Vgdrdydz
1%

These two summands at the end can be integrated separately if desired.
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12.21.11. Let V be a convex region in R3 whose boundary is a closed surface
S and let n be the unit outer normal of S. Let F' and G be two continuously
differentiable vector fields such that V.x F = Vx G and V- F =V -G
everywhere on V and such that F'-n = G -n on S. Prove that I = G
everywhere on V.

Solution. Let H = F — (. Since all the above relations are linear, we have
that Vx H =0,V -H =0, and H -n = 0. It suffices to show that H = 0.
Since V' is convex, then V x H = 0 implies that H is conservative, so that
H =V f. Now, note that

|H|P=Vf-Vf=V fVf- [V -Vf=V.fVf

since V - H = 0. Now by the divergence theorem

J[[ 19wyt = [[[ v s9pasayiz= [[ 97 as

But H -n = 0 then fVf-n =0 as well. Therefore this integral is zero, and

we conclude that
/// ||H||* dx dy dz = 0.
v

Since ||H||? is a nonnegative function on V, then H = 0 as desired.
6.3.1. Solve the differential equation y' — 3y = €** on all of R when y(0) = 0.

Solution. The integrating factor is A(z) = [ —3dt = (—=3t)§ = —3x. There-
fore by theorem 6.1, the unique solution on R to the IVP is

y = €3x/ 621567315 dt — 631/ eft dt — 63:3(_671 + 1) — 63:v o €2$.
0 0

6.3.5. A curve with equation y = f(z) passes through the origin. Lines drawn
parallel to the coordinate axes through an arbitrary point of the curve form a
rectangle with two sides on the axes. The curve divides every such rectangle
into two regions A and B, one of which has an area equal to n times the other.
Find the function f.

Solution. Consider the point (z, f(z)) on the curve. The area below the curve
is determined by the integral fo‘r f(t)dt while the area above the integral is
determined by [ f(x) — f(t) dt. The relation between them is

o/ ey de = / @) - fyt



The fundamental theorem of calculus transforms this equation into

nf(z) = f(z) +zf'(x) — f(z).
Therefore it suffices to solve the separable differential equation

dy n
dr 7
The usual method yields In(y) = nln(x) 4 ¢ so that y = ca™.

6.3.7,8,9,10. Find all solutions of the following differential equations on R.
(M) y' —4y=0@8)y" +4y=0,(9) v —2y+5y=0(10) ¥ +2¢y +y =0.
Solution. These solutions use facts in theorem 6.2 and the ensuing discussion
below the theorem.

(7) The roots of the characteristic equation r* —4 = 0 are r = 2 so that the
solution space of the equation is spanned by €** and e~2*. Therefore a general
solution has the form y = c;e** 4 cpe™2*,

(8) The roots of the characteristic equation r?+4 = 0 are r = +2i. In this case
the discriminant is negative, so the solution space of the equation is spanned
by cos(2z) and sin(2z) over R. Therefore a general solution has the form
y = ¢ cos(2x) + ¢ sin(2x).

(9) The roots of the characteristic equation r?—2r+5 = 0 are r = 1+2i. Again
the discriminant is negative, so the solution space is spanned by e® cos(2z)
and e”sin(2z) over the reals. Therefore a general solution has the form
y = c1€” cos(2z) + c2e” sin(2x).

(10) The roots of the characteristic equation 72 4+ 2r +1 = 0 are r = —1 with
multiplicity 2. The discriminant in this case vanishes, so that the solution
space is spanned by e™® and xe~”*. Therefore the general solution has the form

xT

Y =cie ¥ 4 core ",
7.4.2. Verify each of the following differentiation rules for matrix functions,
assuming P and () are differentiable. (a) (P + Q) = P+ Q' (b) (PQ)" =
PQ'+P'Q (c) (Q71) =-Q7'QQ™ (d) (PQ™") = -PQT'QQ™ + P'Q™"
Solution. (a) This relation follows readily from the fact that the derivative is
linear on each entry. On the ijth entry, we have (p;; + ¢;;)" = p; + ¢qj;- Since
(PQ)" and P’ + @ have equal entries, they are equal matrices.



(b) Similarly, we can verify this relation on the entries.

/
(sz-qurj) = Pty + ikl = Y Pl + > Dikdlh;-
k k k k

Notice the the left hand side is the ijth entry of (PQ)" and the right hand side
is the ijth entry of P'QQ + PQ'.

(c) Since Q! exists, we know that QQ~' = I. Using the product rule on this
equation, we obtain Q'Q! + Q(Q!) = 0. Solving for (Q~')’, the desired
relation

Q) =-07'QQ™

is obtained.

(d) This is a direct combination of (b) and (c).

7.4.3. (a) Prove formulas for (P?)" and (P3)". (b) Guess the formula for (P*)’
and prove it by induction.

Solution. (a) By the product rule (P?) = P'P + PP’. For the next power:
(P?) = (P*)P+ P*P' = P'P* + PP'P + P*P.

(b) We claim that (P*) = 32 | Pi='P'P¥~i. The base case is the previous

part of the problem. Assume the case for kK — 1. Then

k—1
(Pk:)/ — (Pk—1>/P + Pk—IPI — <Z Pi—lp/Pk—i—1> P + Pk—lp/

=1

N

-1 k
— Pi*lplpk*i + Pk*lp/ _ Z Pi*lplpkfi
i=1

i=1

7.4.8. Prove that [|A+ B|| < ||A|| + || B|| and |¢| - ||A]| = [|cA]|.

Solution. The triangle inequality for this matrix norm follows from the triangle
inequality for real numbers.

A+ B|| =" lai; + byl <D lag| + [by]

2V} v
= lagl+ > byl = 1Al + | Bl
ij ij



For the second identity:
leAll =D leay| = lel Y lay| = le] - [|A]].
1, .3

7.4.9. If a matrix function P is integrable on an interval [a,b], prove that
Pt < [P d.
Solution. This inequality also follows from the case for real integrable func-

tions.

/abP(t) dt’ = ; /abpij(t) dt’ < ZZ/; Ipi; (1] dt

:/abzz:|pij(t)\dt=/ab‘P(t)|dt
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