
Homework 13 Solutions
February 1, 2020

12.13.1. Transform the surface integral of∇×F where F (x, y, z) = (y2, xy, xz)
over the hemisphere of x2 + y2 + z2 = 1 with z ≥ 0 into a line integral, and
then evaluate the integral.

Solution. Call the surface S. The boundary of S is a circle of radius 1 in the
xy-plane centered at the origin. By Stoke's theorem,∫∫

S

∇×F · dS =

∫
∂S

F ds =

∫ 2π

0

(sin2(t), cos(t) sin(t), 0)·(− sin(t), cos(t), 0) dt.

The integral evaluates to 0.

12.13.4. Compute the integral of ∇ × F where F = (xz,−y, x2y) over the
surface S which sonsts of three faces not in the xz-plane of the tetrahedron
bounded by the three coordinate planes, and the planes 3x+ y + 3z = 6. The
normal is outward.

Solution. The boundary of S is the intersection of the plane with the xz-plane,
which is when y = 0. Thus it is the triangle formed by 3x+3z = 6, or z = 2−x,
x = 0, and z = 0. The integral can be computed using Stoke's theorem

∫∫
S

∇× F · dS =

∫
∂S

F · ds

=

∫ 2

0

(0, 0, 0) · (0, 0, 1) dt+

∫ 2

0

(0, 0, 0) · (−1, 0, 0) dt

+

∫ 2

0

(t(2− t), 0, 0) · (1, 0,−1) dt

= 4/3

12.13.5. Use Stoke's theorem to show that
∫
C

(y, z, x) · ds = πa2
√

3 where C
is the curve of intersection between x2 + y2 + z2 = a2 and x+ y + z = 0.

Solution. First, note that ∇ × F = (−1,−1,−1). Then to apply Stoke's
theorem, we can choose any surface S with C as a boundary and evaluate the
integral of (−1,−1,−1) over S. Let S be the portion of the plane x+y+z = 0
inside the curve. Let T be the projection of S onto the xy-plane. Then a
parametrization of S is Φ(x, y) = (x, y,−x − y) with domain T . The normal
is therefore also n = (−1,−1,−1) by the parametrization of a graph formula.
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To �nd T substitute z = −x − y into the equation for the sphere, to obtain
x2 + y2 + xy = a2/2. The relevant integral is∫∫

S

(−1,−1,−1) · dS =

∫∫
T

(−1,−1,−1) · 1√
3

(−1,−1,−1) dx dy =
√

3a(S)

Since S divides the sphere in half, then it is the same area as x2 + y2 = a2 by
a rotation. The area of this circle is πa2, so that the integral is πa2

√
3.

12.13.6. Show that
∫
C

(y + z) dx+ (z + x) dy + (x+ y) dz = 0 where C is the
curve of intersection of the cylinder x2 + y2 = 2y and the plane y = z.

Solution. Using the same method as last exercise, we �nd a surface is C as
a boundary and integrate ∇ × F over that surface S. We pick S to be the
portion of the plane z = y inside of x2 + y2 = 2y. The normal is n = (0,−1, 1)
and ∇× F = (0, 0, 0), so therefore

∫∫
S

0 · dS = 0 as desired.

12.13.11. If r = (x, y, z) and (P,Q,R) = a × r where a is a constant, show
that ∫

C

(P,Q,R) ds = 2

∫∫
S

a · n dS

where C is a curve bounding a surface S and n is a suitable normal.

Solution. By Stoke's theorem,∫
C

(P,Q,R) ds =

∫∫
S

∇× (P,Q,R) · n dS.

Therefore it su�ces to calculate the curl of (P,Q,R). Let a = (a, b, c), at the
risk of bad notation.

∇× (P,Q,R) = ∇× (a× r)
= ∇× (bz − cy, cx− az, ay − bx)

= (a+ a, b+ b, c+ c) = 2a

Then the result follows.

12.13.13. (a) Use the formula for di�erentiating a product to show that

∂

∂u

(
p
∂X

∂v

)
− ∂

∂v

(
p
∂X

∂u

)
=
∂p

∂u

∂X

∂v
− ∂p

∂v

∂X

∂u
.

(b) Now let p(u, v) = P (X, Y, Z) where X, Y, Z are functions of u, v. Compute
∂p
∂u

and ∂p
∂v

by the chain rule and use part (a) to deduce a relation.
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Solution. (a) By the product rule and equality of mixed partials in this case:

∂

∂u

(
p
∂X

∂v

)
− ∂

∂v

(
p
∂X

∂u

)
= p

∂2X

∂u∂v
+
∂p

∂u

∂X

∂v
− p ∂

2X

∂v∂u
− ∂p

∂v

∂X

∂u

=
∂p

∂u

∂X

∂v
− ∂p

∂v

∂X

∂u
.

(b) The chain rule implies that

[
∂p
∂u

∂p
∂v

]
=
[
∂P
∂X

∂P
∂Y

∂P
∂Z

] ∂X∂u ∂X
∂v

∂Y
∂u

∂Y
∂v

∂Z
∂u

∂Z
∂v

 .
Doing out the matrix multiplication and plugging into the right hand side of
part (a), we obtain:

∂p

∂u

∂X

∂v
− ∂p

∂v

∂X

∂u
=

(∑ ∂P

∂Xi

∂Xi

∂u

)(
∂X

∂v

)
−
(∑ ∂P

∂Xi

∂Xi

∂v

)(
∂X

∂u

)
=
∂P

∂Y

∂Y

∂u

∂X

∂v
+
∂P

∂z

∂Z

∂u

∂X

∂v
− ∂P

∂Z

∂Y

∂v

∂X

∂u
− ∂P

∂Z

∂Z

∂v

∂X

∂u

= −∂P
∂Y

∂(X, Y )

∂(u, v)
+
∂P

∂Z

∂(X,Z)

∂(u, v)
.

Combining with part (a), we obtain a proof of (12.29).

12.15.1ac. For each of the following vector �elds, determine the Jacobian
matrix and compute the curl and divergence. (a) F = (x2+yz, y2+xz, z2+xy)
(c) F = (z + sin(y),−z + x cos(y), 0)

Solution. (a) DF =

2x z y
z 2y x
y x 2z

, ∇× F = (0, 0, 0), ∇ · F = 2(x+ y + z).

(c) DF =

 cos(y) 1 0
−x sin(y) −1 cos(y)

0 0 0

, ∇× F = (1, 1, 0), ∇ · F = −x sin(y).

12.15.2. If R = (x, y, z) and r = ||R||, compute ∇ × f(r)R, where f is a
di�erentiable function.

Solution. By the formula on page 446, we have

∇× f(r)R = f(r)(∇×R) +∇f(r)×R

= 0 +
1

r

∂f

∂r
R×R = 0
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12.15.4. Again let R = (x, y, z) and r = ||R||. Find all integers n such that
∇ · (rnR) = 0.

Solution. Begin by calculating ∇ · (rnR).

∇ · (rnR) =
∑
i

∂

∂xi
(xir

n)

=
∑
i

rn + nx2i r
n−2

= 3rn + n(x2 + y2 + z2)rn−2

= (3 + n)rn

From here it is clear that only when n = −3 is expression equal to 0.

12.15.8. Prove the identity

∇ · (F ×G) = G · (∇× F )− F · (∇×G).

Solution. This identity is proved by writing out each side entrywise.

∇ · (F ×G) = ∇ · (F2G3 − F3G2, F3G1 − F1G3, F1G2 − F2G1)

=
∂F2

∂x
G3 + F2

∂G3

∂x
− ∂F3

∂x
G2 − F3

∂G2

∂x

+
∂F3

∂y
G1 + F3

∂G1

∂y
− ∂F1

∂y
G3 − F1

∂G3

∂y

+
∂F1

∂z
G2 + F1

∂G2

∂z
− ∂F2

∂z
G1 − F2

∂G1

∂z

On the other hand:

G · (∇× F )− F · (∇×G) = (G1, G2, G3) ·
(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
− (F1, F2, F3) ·

(
∂G3

∂y
− ∂G2

∂z
,
∂G1

∂z
− ∂G3

∂x
,
∂G2

∂x
− ∂G1

∂y

)
=
∂F2

∂x
G3 + F2

∂G3

∂x
− ∂F3

∂x
G2 − F3

∂G2

∂x

+
∂F3

∂y
G1 + F3

∂G1

∂y
− ∂F1

∂y
G3 − F1

∂G3

∂y

+
∂F1

∂z
G2 + F1

∂G2

∂z
− ∂F2

∂z
G1 − F2

∂G1

∂z

12.15.11. Let V (x, y) = (yc, xc) where c > 0. Let r(x, y) = (x, y). Let R be
the plane region bounded by a piecewise smooth Jordan curve C. Compute
∇·(V ×r), and∇×(V ×r). Use Green's theorem to show that

∫
C
V ×r· ds = 0.
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Solution. First we compute V ×r, where we view them in R3 with z-component
0. Then

V × r = (0, 0, yc+1 − xc+1).

Then ∇ · (V × r) = 0 + 0 + 0 = 0 and ∇ × (V × r) = (c + 1)(yc, xc, 0) =
(c + 1)V . We apply Green's theorem (well really Stoke's theorem), so that∫
C
V × r dS =

∫∫
S
∇× (V × r) dS. The latter integral is computed as follows,

since S is a �at surface with unit normal n = (0, 0, 1).∫∫
S

(c+ 1)(V ) · (0, 0, 1) dS =

∫∫
S

0 dS = 0.

12.21.1. Let S be the surface of then unit cube ∂[0, 1]3. Let n be the unit
outer normal of S. If F = (x2, y2, z2), use the divergence theorem to evaluate
the surface integral

∫∫
F · n dS. Verify the result by computing the integral

directly.

Solution. By the divergence theorem,∫∫
S

F · n dS =

∫∫∫
[0,1]3

2(x+ y + z) dV = 3.

Manually, the integrals on the three sides on the coordinate planes are 0 since
the normal is perpendicular to the parametrization for the side. On the three
other sides, F · n = 1 so that you add up the areas of the 3 sides and you get
3.

12.21.2. The sphere of radius 5 centered at the origin is intersected by the
plane z = 3. The smaller portion forms a solid V closed by a surface S0, made
up of the sphere part S1 and the plane part S2. Compute∫∫

S

(xz, yz, 1) dS

for (a) S = S1, (b) S = S2, and (c) S = S0. Solve for part (c) using the parts
of (a) and (b), and also by the divergence theorem.

Solution. (a) Note that the surface S1 is the graph of z =
√

25− x2 − y2 over
the circle x2 + y2 ≤ 16 in the plane. Therefore∫∫

S1

(xz, yz, 1) · dS =

∫∫
T

(xz, yz, 1) · (x/z, y/z, 1) dx dy

=

∫∫
T

x2 + y2 + 1 dx dy

= 2π

∫ 4

0

(r2 + 1)r dr = 144π
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(b) Similarly, the planar region is the graph of z = 3 over the region x2+y2 ≤ 16
in the plane, so that with upward normal, the integral can be computed.

∫∫
S2

(xz, yz, 1) dS =

∫∫
T

(xz, yz, 1) · (0, 0, 1) dx dy =

∫∫
T

1 dx dy = 16π

(c) On the one hand, the outward normal on S0 means that∫∫
S0

F · dS =

∫∫
S1

F · dS −
∫∫

S2

F · dS = 144π − 16π = 128π.

Let W be the interior of S0. Then on the other hand, the divergence theorem
implies that ∫∫

S0

F · dS =

∫∫∫
W

2z dz dx dy

=

∫∫
T

∫ √25−x2−y2

3

2z dz dx dy

=

∫∫
T

16− x2 − y2 dx dy

= 2π

∫ 4

0

r(16− r2) dr = 128π

12.21.4,6. Let ∂f
∂n

= ∇f · n and assume a region V in R3 has boundary S

which is a closed surface. Then prove the following identities. (4)
∫∫

S
∂f
∂n
dS =∫∫∫

V
∇2f dx dy dz and (6)

∫∫
S
f ∂g
∂n
dS =

∫∫∫
V
f∇2g +∇f · ∇g dx dy dz

Solution. (4) By the divergence theorem:∫∫
S

∂f

∂n
dS =

∫∫
S

∇f · dS =

∫∫∫
V

∇ · ∇f dx dy dz =

∫∫∫
V

∇2f dx dy dz.

(6) Again by the divergence theorem and the divergence of a product formula:∫∫
S

f
∂g

∂n
dS =

∫∫
s

f∇g · dS

=

∫∫∫
V

∇ · (f∇g) dx dy dz

=

∫∫∫
V

f∇2g +∇f · ∇g dx dy dz

These two summands at the end can be integrated separately if desired.
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12.21.11. Let V be a convex region in R3 whose boundary is a closed surface
S and let n be the unit outer normal of S. Let F and G be two continuously
di�erentiable vector �elds such that ∇ × F = ∇ × G and ∇ · F = ∇ · G
everywhere on V and such that F · n = G · n on S. Prove that F = G
everywhere on V .

Solution. Let H = F − G. Since all the above relations are linear, we have
that ∇ × H = 0, ∇ · H = 0, and H · n = 0. It su�ces to show that H = 0.
Since V is convex, then ∇ × H = 0 implies that H is conservative, so that
H = ∇f . Now, note that

||H||2 = ∇f · ∇f = ∇ · f∇f − f∇ · ∇f = ∇ · f∇f

since ∇ ·H = 0. Now by the divergence theorem∫∫∫
V

||∇f ||2 dx dy dz =

∫∫∫
V

∇ · f∇f dx dy dz =

∫∫
S

f∇f · dS

But H · n = 0 then f∇f · n = 0 as well. Therefore this integral is zero, and
we conclude that ∫∫∫

V

||H||2 dx dy dz = 0.

Since ||H||2 is a nonnegative function on V , then H = 0 as desired.

6.3.1. Solve the di�erential equation y′ − 3y = e2x on all of R when y(0) = 0.

Solution. The integrating factor is A(x) =
∫ x
0
−3 dt = (−3t)x0 = −3x. There-

fore by theorem 6.1, the unique solution on R to the IVP is

y = e3x
∫ x

0

e2te−3t dt = e3x
∫ x

0

e−t dt = e3x(−e−x + 1) = e3x − e2x.

6.3.5. A curve with equation y = f(x) passes through the origin. Lines drawn
parallel to the coordinate axes through an arbitrary point of the curve form a
rectangle with two sides on the axes. The curve divides every such rectangle
into two regions A and B, one of which has an area equal to n times the other.
Find the function f .

Solution. Consider the point (x, f(x)) on the curve. The area below the curve
is determined by the integral

∫ x
0
f(t) dt while the area above the integral is

determined by
∫ x
0
f(x)− f(t) dt. The relation between them is

n

∫ x

0

f(t) dt =

∫ x

0

f(x)− f(t) dt.
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The fundamental theorem of calculus transforms this equation into

nf(x) = f(x) + xf ′(x)− f(x).

Therefore it su�ces to solve the separable di�erential equation

dy

dx
=
n

x
y.

The usual method yields ln(y) = n ln(x) + c so that y = cxn.

6.3.7,8,9,10. Find all solutions of the following di�erential equations on R.
(7) y′′ − 4y = 0 (8) y′′ + 4y = 0, (9) y′′ − 2y + 5y = 0 (10) y′′ + 2y′ + y = 0.

Solution. These solutions use facts in theorem 6.2 and the ensuing discussion
below the theorem.

(7) The roots of the characteristic equation r2 − 4 = 0 are r = ±2 so that the
solution space of the equation is spanned by e2x and e−2x. Therefore a general
solution has the form y = c1e

2x + c2e
−2x.

(8) The roots of the characteristic equation r2+4 = 0 are r = ±2i. In this case
the discriminant is negative, so the solution space of the equation is spanned
by cos(2x) and sin(2x) over R. Therefore a general solution has the form
y = c1 cos(2x) + c2 sin(2x).

(9) The roots of the characteristic equation r2−2r+5 = 0 are r = 1±2i. Again
the discriminant is negative, so the solution space is spanned by ex cos(2x)
and ex sin(2x) over the reals. Therefore a general solution has the form
y = c1e

x cos(2x) + c2e
x sin(2x).

(10) The roots of the characteristic equation r2 + 2r + 1 = 0 are r = −1 with
multiplicity 2. The discriminant in this case vanishes, so that the solution
space is spanned by e−x and xe−x. Therefore the general solution has the form
y = c1e

−x + c2xe
−x.

7.4.2. Verify each of the following di�erentiation rules for matrix functions,
assuming P and Q are di�erentiable. (a) (P + Q)′ = P ′ + Q′ (b) (PQ)′ =
PQ′ + P ′Q (c) (Q−1)′ = −Q−1Q′Q−1 (d) (PQ−1)′ = −PQ−1Q′Q−1 + P ′Q−1

Solution. (a) This relation follows readily from the fact that the derivative is
linear on each entry. On the ijth entry, we have (pij + qij)

′ = p′ij + q′ij. Since
(PQ)′ and P ′ +Q′ have equal entries, they are equal matrices.
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(b) Similarly, we can verify this relation on the entries.(∑
k

pikqkj

)′
=
∑
k

p′ikqkj + pikq
′
kj =

∑
k

p′ikqkj +
∑
k

pikq
′
kj.

Notice the the left hand side is the ijth entry of (PQ)′ and the right hand side
is the ijth entry of P ′Q+ PQ′.

(c) Since Q−1 exists, we know that QQ−1 = I. Using the product rule on this
equation, we obtain Q′Q−1 + Q(Q−1)′ = 0. Solving for (Q−1)′, the desired
relation

(Q−1)′ = −Q−1Q′Q−1

is obtained.

(d) This is a direct combination of (b) and (c).

7.4.3. (a) Prove formulas for (P 2)′ and (P 3)′. (b) Guess the formula for (P k)′

and prove it by induction.

Solution. (a) By the product rule (P 2)′ = P ′P + PP ′. For the next power:

(P 3)′ = (P 2)′P + P 2P ′ = P ′P 2 + PP ′P + P 2P ′.

(b) We claim that (P k)′ =
∑k

i=1 P
i−1P ′P k−i. The base case is the previous

part of the problem. Assume the case for k − 1. Then

(P k)′ = (P k−1)′P + P k−1P ′ =

(
k−1∑
i=1

P i−1P ′P k−i−1

)
P + P k−1P ′

=
k−1∑
i=1

P i−1P ′P k−i + P k−1P ′ =
k∑
i=1

P i−1P ′P k−i

7.4.8. Prove that ||A+B|| ≤ ||A||+ ||B|| and |c| · ||A|| = ||cA||.
Solution. The triangle inequality for this matrix norm follows from the triangle
inequality for real numbers.

||A+B|| =
∑
i,j

|aij + bij| ≤
∑
ij

|aij|+ |bij|

=
∑
i,j

|aij|+
∑
i,j

|bij| = ||A||+ ||B||
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For the second identity:

||cA|| =
∑
i,j

|caij| = |c|
∑
i,j

|aij| = |c| · ||A||.

7.4.9. If a matrix function P is integrable on an interval [a, b], prove that∣∣∣∫ ba P (t) dt
∣∣∣ ≤ ∫ ba |P (t)| dt.

Solution. This inequality also follows from the case for real integrable func-
tions.

∣∣∣∣∫ b

a

P (t) dt

∣∣∣∣ =
∑
i,j

∣∣∣∣∫ b

a

pij(t) dt

∣∣∣∣ ≤∑
i,j

∫ b

a

|pij(t)| dt

=

∫ b

a

∑
i,j

|pij(t)| dt =

∫ b

a

|P (t)| dt
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