Homework 14 Solutions
February 1, 2020

7.4.10. Let D be an n x n diagonal matrix with entries d; = A\;. Prove that
the matrix series Y ;- D*/k! converges and is also a diagonal matrix.

Solution. We claim that Y2 D*/k! is the diagonal matrix with entries e,
which we call A. Indeed D* is diagonal with entries A\¥. Therefore since
e’ = ,x"/nl, we pick high enough N such that for each ¢,

N

PV
Z k_l' — M| < g/n.
k=0
Then N N
Dh VN
;k—— Z%H—eAl < €.

This proves convergence of the matrix series.

7.4.12. Assume that the matrix series ZZ‘;I C) converges, where each CY
is an n x n matrix. Prove that the matrix series ) ;- ACyB converges to
A2 Ck) B

Solution. Let Sy denote the Nth partial sum matrix and let S denote the
infinite series. Pick IV high enough so that |Sx — S| < ¢/(|]A||B|). Then

N
> (ACyB) — ASB| = |ASyB — ASB|
k=1
= |A(Sy — 5)B|
< |A||Sxy = S||B|
< |A||B = €.
Pl

7.12.1,2,4. (a) Express the powers of the following matrices as a linear com-

bination of I and A. (b) Calculate e!t. (1) A = E (1)] (2) A= E (2)1 (4)
-1 0
a=[3]

Solution. (1a) By the Cayley-Hamilton theorem, A% = 2A — I, since A satisfies
its own characteristic polynomial A\*> — 2\ + 1. Now we claim that A" =



nA — (n —1)I. By induction, assume the formula for A"~!. Then
A" =A(n—1DA-n—-2))=n—-1)2A—-1)— (n—2)A
=2n—-1)—-n—-2)A—-(n—-1)I=nA—(n—-1)I

as desired.

(1b) Note that A is not diagonalizable, but note that N = A — I = [(1) 8] is

nilpotent. Therefore

¢
tA _ t(I+N) _ _tI tN _ _t _|€ 0
e e ee e'(I +tN) Let et}
(2a) Again the Cayley-Hamilton theorem A% =24 — 21. We claim that A" =
(2" —1)A — (2™ — 2)I Again by induction,
At =2 AT - (2" -2 A= 2" - 1)(BA-2]) - (2" - 2)A
=B -2t 34+ A - (2" -2 = (2" - 1)A - (2" - 2)I.
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Now we can take the exponent of the corresponding diagonal matrix and con-
jugate by the change of basis matrix.

a1 0][¢ 0][-1 0 &0
(& = =
1 1][0 e*] |1 1 —e' e’ e
(4a) Tt is clear that A* = I, so that A" = I if n is even and A" = A if n is
odd.

(2b) Diagonalize A by

—t
(4b) Since A is diagonal, then ¢! = {60 2]

7.12.7. Compute the derivative of e4®") where A(t) = {0 0

it is neither A’(t)e*® nor eA® A'(t).

Solution. First, diagonalize the matrix function. The usual method shows that
—t 1110 0 |0 1
ao =3l o A A

2

1 t}, and show that



Therefore
am [t 171 00 1] [e (e—1)
7701 ollo el |1t o 1|
0 6—1:|

0 0
We can see directly that this is not equal to A’(t)e® or eA® A'(t). Calcu-

lating each,
0 1| |e et
/ A(t) —
A(t)e [O 0] [O 0] 0

A 4/ (1) = {8 eﬂ {8 (1)} = {8 8}

None of these are equal.

Taking the derivative, (eA®) = {

and

011
7.12.8. Let A= |0 0 1|. (a) Calculate A" and express A% in terms of I,
0 00
A, and A2. (b) Calculate e*4.
Solution. (a) We claim that this matrix is nilpotent. Indeed it easy to check
0 01
A2 = {0 0 0| and that A% = 0. Therefore A" = 0 for n > 3. Trivially, then
0 00
A* =0A% +0A 401,
1t t+1%/2
(b) Since A is nilpotent, then e'4 =T +tA +124%2/2 =0 1 t
0 0 1

7.12.13. Compute ee?, ePe?, and eA*P when A = [(1) (1)] and B = [(1) _01 '

Note that these three matrices are distinct.

Solution. First, e is simply e*(!) where A(t) is defined in exercise 7.12.7.

There we showed that e = 8 ¢ I L . Similarly ef = 4D = {8 L I c
2 _ 2 _ 2 _ ]
Then ele? = |© e +2—1 and efet = | € 2e+1 . Finally, A +
0 1 0 1
20 arp €20 : -
B = 0 ol %° that e =10 1l° All of these matrices are distinct.



Extra Problem # 1. Let A be an n X n matrix which leaves a subspace
E C R” invariant. Prove that e also leaves E invariant.

Solution. Let S, (A) be the partial sums of e, so that |S, — e?| — 0. First,
note that S, (A) leaves E invariant. Let z € E. Then

which is a linear combination of elements of E. Since E is a subspace, then
Sn(A)x € E.
Now we claim that S,(A)z — ez as vectors in R™. In fact by submulti-
plicativity,
1S, (A)z — eta| <|S, — e?||z] — 0.

Finally, it suffices to show that the limit of vectors in F is also in E. This
follows from the fact that F is closed and closed sets contain limit points. It is
clear that E is a closed set (use the general version the distance from a point to
a plane formula). Suppose for contradiction that ez ¢ E. Since E° is open,
let Bs(ez) be a ball contained in E° centered at e?z. Since S, (A)r — ez,
there exists an N such that for all n > N, |S,(A)z — eAx| < §. This would
imply that S, (A)z € Bs(e“x) C E° for some n, which is a contradiction.

Extra Problem # 2. With the same assumptions as above, prove that if x(¢)
is a solution of 2/(t) = Axz(t), (0) = xy with zy € E, then we can conclude
that x(t) € E, for all t € R.

Solution. By the main theorem, we know that the unique solution to this
vector differential equation is x(t) = eAlzy. Since A leaves E invariant, then
so does tA, and therefore so does e**. Thus e*z, € E since zo € E. This

shows that z(t) € E for all t.

Extra Problem # 3. Let ¢(t, o) denote the solution of the initial value
problem above. Here zy € R™ however. Prove that the solution is continuous
with respect to the initial conditions, in that for each fixed ¢, we have the
following lim,,_,,, ¢(t,y) = ¢(t, zo).

Solution. The claim follows from the main theorem, that ¢(¢, 7¢) = e'4zq. For
a fixed ¢, we show that lim, ., ey = ez, or in other words, given any
e > 0, we can find § such that |y — 2| < & implies |ety — eAtxg| < €. Since ¢
is fixed and y — xg, pick 6 = &/|e!*|. Then

£
ey = eMan] < [e¥ly = o < | =

This proves the claim.



