Homework 14 Solutions February 1, 2020

7.4.10. Let D be an $n \times n$ diagonal matrix with entries $d_{ii} = \lambda_i$. Prove that the matrix series $\sum_{k=0}^{\infty} D^k / k!$ converges and is also a diagonal matrix. Solution. We claim that $\sum_{k=0}^{\infty} D^k / k!$ is the diagonal matrix with entries e^{λ_i} ,

which we call A. Indeed D^k is diagonal with entries λ_i^k . Therefore since $e^x = \sum_{n=0}^{\infty} x^n/n!$, we pick high enough N such that for each i,

$$
\left|\sum_{k=0}^N \frac{\lambda_i^k}{k!} - e^{\lambda_i}\right| < \varepsilon/n.
$$

Then

$$
\left|\sum_{k=0}^{N} \frac{D^k}{k!} - A\right| \le \sum_i \left|\sum_{k=0}^{N} \frac{\lambda_i^k}{k!} - e^{\lambda_i}\right| < \varepsilon.
$$

This proves convergence of the matrix series.

7.4.12. Assume that the matrix series $\sum_{k=1}^{\infty} C_k$ converges, where each C_k is an $n \times n$ matrix. Prove that the matrix series $\sum_{k=1}^{\infty} AC_kB$ converges to $A\left(\sum_{k=1}^{\infty} C_k\right)B.$

Solution. Let S_N denote the Nth partial sum matrix and let S denote the infinite series. Pick N high enough so that $|S_N - S| < \varepsilon/(|A||B|)$. Then

$$
\left| \sum_{k=1}^{N} (AC_k B) - ASB \right| = |AS_N B - ASB|
$$

= $|A(S_N - S)B|$
 $\leq |A||S_N - S||B|$
 $< |A||B|\frac{\varepsilon}{|A||B|} = \varepsilon.$

7.12.1,2,4. (a) Express the powers of the following matrices as a linear combination of *I* and *A*. (b) Calculate e^{tA} . (1) $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ (2) $A =$ $\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$ (4) $A =$ $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

Solution. (1a) By the Cayley-Hamilton theorem, $A^2 = 2A-I$, since A satisfies its own characteristic polynomial $\lambda^2 - 2\lambda + 1$. Now we claim that $A^n =$ $nA - (n-1)I$. By induction, assume the formula for A^{n-1} . Then

$$
An = A((n - 1)A - (n - 2)I) = (n - 1)(2A - I) - (n - 2)A
$$

= (2(n - 1) - (n - 2))A - (n - 1)I = nA - (n - 1)I

as desired.

(1b) Note that A is not diagonalizable, but note that $N = A - I =$ $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ is nilpotent. Therefore

$$
e^{tA} = e^{t(I+N)} = e^{tI}e^{tN} = e^t(I+tN) = \begin{bmatrix} e^t & 0\\ te^t & e^t \end{bmatrix}
$$

(2a) Again the Cayley-Hamilton theorem $A^2 = 2A - 2I$. We claim that $A^n =$ $(2^{n} - 1)A - (2^{n} - 2)I$ Again by induction,

$$
A^{n} = (2^{n-1} - 1)A^{2} - (2^{n-1} - 2)A = (2^{n-1} - 1)(3A - 2I) - (2^{n-1} - 2)A
$$

= $(3(2^{n-1}) - 2^{n-1} - 3 + 2)A - (2^{n} - 2)I = (2^{n} - 1)A - (2^{n} - 2)I.$

(2b) Diagonalize A by

$$
A = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}.
$$

Now we can take the exponent of the corresponding diagonal matrix and conjugate by the change of basis matrix.

$$
e^{tA} = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} e^t & 0 \\ 0 & e^{2t} \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} e^t & 0 \\ -e^t + e^{2t} & e^{2t} \end{bmatrix}
$$

(4a) It is clear that $A^2 = I$, so that $A^n = I$ if n is even and $A^n = A$ if n is odd.

(4b) Since A is diagonal, then $e^{tA} = \begin{bmatrix} e^{-t} & 0 \\ 0 & 0 \end{bmatrix}$ $0 \quad e^t$ 1 .

7.12.7. Compute the derivative of $e^{A(t)}$ where $A(t) = \begin{bmatrix} 1 & t \\ 0 & 0 \end{bmatrix}$, and show that it is neither $A'(t)e^{A(t)}$ nor $e^{A(t)}A'(t)$.

Solution. First, diagonalize the matrix function. The usual method shows that

$$
A(t) = \begin{bmatrix} -t & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & t \end{bmatrix}.
$$

Therefore

$$
e^{A(t)} = \begin{bmatrix} -t & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & e \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & t \end{bmatrix} = \begin{bmatrix} e & (e-1)t \\ 0 & 1 \end{bmatrix}.
$$

Taking the derivative, $(e^{A(t)})' = \begin{bmatrix} 0 & e-1 \\ 0 & 0 \end{bmatrix}$.

We can see directly that this is not equal to $A'(t)e^{A(t)}$ or $e^{A(t)}A'(t)$. Calculating each,

$$
A'(t)e^{A(t)} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} e & et \\ 0 & 0 \end{bmatrix} = 0
$$

and

$$
e^{A(t)}A'(t) = \begin{bmatrix} e & et \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & e \\ 0 & 0 \end{bmatrix}
$$

.

None of these are equal.

7.12.8. Let
$$
A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
$$
. (a) Calculate A^n and express A^3 in terms of I ,

A, and A^2 . (b) Calculate $e^{\bar{t}A}$.

Solution. (a) We claim that this matrix is nilpotent. Indeed it easy to check $\sqrt{ }$ 0 0 1 1

 $A^2 =$ $\overline{1}$ 0 0 0 0 0 0 and that $A^3 = 0$. Therefore $A^n = 0$ for $n \geq 3$. Trivially, then $A^3 = 0A^2 + 0A + 0I$.

(b) Since A is nilpotent, then $e^{tA} = I + tA + t^2 A^2/2 =$ $\sqrt{ }$ $\overline{}$ 1 t $t + t^2/2$ $0 \quad 1 \qquad t$ 0 0 1 1 $\vert \cdot$ **7.12.13**. Compute $e^{A}e^{B}$, $e^{B}e^{A}$, and e^{A+B} when $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and $B =$ $\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$.

Note that these three matrices are distinct.

Solution. First, e^A is simply $e^{A(1)}$ where $A(t)$ is defined in exercise 7.12.7. There we showed that $e^A = \begin{bmatrix} e & e-1 \\ 0 & 1 \end{bmatrix}$. Similarly $e^B = e^{A(-1)} = \begin{bmatrix} e & 1-e \\ 0 & 1 \end{bmatrix}$. Then $e^{A}e^{B} = \begin{bmatrix} e^{2} & -e^{2} + 2e - 1 \\ 0 & 1 \end{bmatrix}$ and $e^{B}e^{A} = \begin{bmatrix} e & e^{2} - 2e + 1 \\ 0 & 1 \end{bmatrix}$. Finally, $A +$ $B =$ $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$, so that $e^{A+B} = \begin{bmatrix} e^2 & 0 \\ 0 & 1 \end{bmatrix}$. All of these matrices are distinct.

Extra Problem $# 1$. Let A be an $n \times n$ matrix which leaves a subspace $E \subseteq \mathbb{R}^n$ invariant. Prove that e^A also leaves E invariant.

Solution. Let $S_n(A)$ be the partial sums of e^A , so that $|S_n - e^A| \to 0$. First, note that $S_n(A)$ leaves E invariant. Let $x \in E$. Then

$$
S_n(A)x = \sum_{k=0}^n \frac{A^k}{k!}x
$$

which is a linear combination of elements of E . Since E is a subspace, then $S_n(A)x \in E$.

Now we claim that $S_n(A)x \to e^A x$ as vectors in \mathbb{R}^n . In fact by submultiplicativity,

$$
|S_n(A)x - e^A x| \le |S_n - e^A||x| \to 0.
$$

Finally, it suffices to show that the limit of vectors in E is also in E . This follows from the fact that E is closed and closed sets contain limit points. It is clear that E is a closed set (use the general version the distance from a point to a plane formula). Suppose for contradiction that $e^A x \notin E$. Since E^c is open, let $B_{\delta}(e^{A}x)$ be a ball contained in E^{c} centered at $e^{A}x$. Since $S_{n}(A)x \rightarrow e^{A}x$, there exists an N such that for all $n > N$, $|S_n(A)x - e^{A}x| < \delta$. This would imply that $S_n(A)x \in B_\delta(e^A x) \subseteq E^c$ for some n, which is a contradiction.

Extra Problem # 2. With the same assumptions as above, prove that if $x(t)$ is a solution of $x'(t) = Ax(t), x(0) = x_0$ with $x_0 \in E$, then we can conclude that $x(t) \in E$, for all $t \in \mathbb{R}$.

Solution. By the main theorem, we know that the unique solution to this vector differential equation is $x(t) = e^{At}x_0$. Since A leaves E invariant, then so does tA, and therefore so does e^{At} . Thus $e^{tA}x_0 \in E$ since $x_0 \in E$. This shows that $x(t) \in E$ for all t.

Extra Problem # 3. Let $\phi(t, x_0)$ denote the solution of the initial value problem above. Here $x_0 \in \mathbb{R}^n$ however. Prove that the solution is continuous with respect to the initial conditions, in that for each fixed t , we have the following $\lim_{y\to x_0} \phi(t, y) = \phi(t, x_0)$.

Solution. The claim follows from the main theorem, that $\phi(t, x_0) = e^{tA}x_0$. For a fixed t, we show that $\lim_{y\to x_0} e^{tA}y = e^{tA}x_0$, or in other words, given any $\varepsilon > 0$, we can find δ such that $|y - x_0| < \delta$ implies $|e^{At}y - e^{At}x_0| < \varepsilon$. Since t is fixed and $y \to x_0$, pick $\delta = \varepsilon / |e^{At}|$. Then

$$
|e^{At}y - e^{At}x_0| \le |e^{At}||y - x_0| < |e^{At}| \frac{\varepsilon}{|e^{At}|} = \varepsilon.
$$

This proves the claim.