Homework 3 Solutions
February 1, 2020

5.11.1. Determine whether a bunch of matrices are symmetric, skew-symmetric,
Hermitian, or skew-Hermitian.

Solution. a. symmetric b. skew-Hermitian c¢. Hermitian d. skew-symmetric

5.11.2. a. Verify that the 2 x 2 rotation matrix is an orthogonal matrix. b.
Prove that it actually rotates vectors by 6.

Solution. a. This follows from sin? + cos? = 1. b. This follows from sin(a+b) =
sin(a) cos(b) + cos(a) sin(b) and cos(a + b) = cos(a) cos(b) — sin(a) sin(b).
5.11.3. Show that a bunch of matrices do certain things the textbook is claim-
ing.

Solution. a. A(zx,y,z) = (x,y, —z) which is the opposite side of the zy-plane.
b. A(x,y,z) = (z,—y, —z) which is on the opposite side of the z axis.

c. A(x,y,z) = (—x,—y, —z) which is on the opposite side of the origin.

d. This one keeps the same x but rotates y and 2z, which means you're rotating

around the x axis. Also note that (1,0,0) is an eigenvector with eigenvalue 1.
e. You multiply (b) and (d).

5.11.4. a. If a 2 x 2 matrix A is proper, show that it is a rotation matrix for
some 6. b. Show that two matrices are not proper, and find all nonproper
2 X 2 matrices.

Solution. a. If A = [Z 2] is an orthogonal matrix, then (a,b) and (c,d) are

orthogonal unit vectors by the AAT = I criterion. Thus (c,d) = &(—b,a). If
det A = 1, this restricts (¢, d) = (—b,a). Since (a,b) is a unit vector, then it is
on the unit circle and has the form (cos(f),sin(6)). Therefore A is a rotation
matrix.

b. The two matrices are improper since they are orthogonal with determinant
-1. By the above argument, we can see all improper 2 x 2 matrices are of the

form {Z a

5.11.6, 5.11.7. Diagonalize some matrices.
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} , namely a rotation matrix followed by a reflection.

Solution. 6. D = {

-4 0 0
7 D = 0 10 C = ['Ul (%) ’03} where v = \/L375(_3’5’1)’ Vg =
0 0 3



5.11.13. If A is a real skew-symmetric matrix, prove that I — A and [ + A
are nonsingular and that (I — A)(I + A)~! is orthogonal.

Solution. Since A is real skew-symmetric, then it has only real eigenvalue A = 0

if any. Then A = £1 are not eigenvalues, so by definition A+ I is nonsingular.

Now we show that B = (I — A)(I + A)~! is orthogonal by showing BT = B!
This is true since

Bl=(I1-A"I+A")'=I+A)I-A)"'=B"

5.15.1, 5.15.5. For each of the following quadratic forms, find a symmetric
matrix A for it, find the eigenvalues of A, find an orthonormal set of eigenvec-
tors, and an orthogonal diagonalizing matrix.

1. 4xy + 4x179 + 22

5. T3 + T1Ty + T1T3 + ToT3

Solution. 1. A = [;l ﬂ with eigenvalues A = 0,5 and orthogonal eigenbasis

\%(—1,2) and \%(2, 1).
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5. A=3 1 (f (1) with eigenvalues A = —1/2,0, 3/2 and eigenbasis \%(0,—1,1),

\/ig(—l, 1,1), and \/L6<2’ 1,1).
5.15.8, 5.15.9. Make a sketch of the following conic sections.

8 y?—2xy+222—-5=0

9. y> —2zy + 5 =0

Solution. You find the eigenbasis, change the variables, then sketch whether
you get a rotated parabola, ellipse, or circle, hyperbola, or two lines. Did you
know that a parabola is just an ellipse with one end at infinity?

8. rotated ellipse

9. rotated hyperbola

5.20.1a. Let T : V — V be the transformation given by T'(xz) = cx for some
fixed scalar c. Prove that T is unitary iff |c| = 1.

Solution. If T is unitary and has an eigenvalue A then |A\| = 1 by theorem 5.16.
For T'(z) = cx, ¢ is an eigenvalue trivially, so that |c| = 1.

5.20.1b. If V is one-dimensional, prove that only unitary transformation on
V' are those described in (a). If V is real, then ¢ = £1.

Solution. Since V is one-dimensional, then it has a basis element e, and there-
fore T'(e) = ce for some scalar c. Since e is a basis T'(x) = cz for all z € V.
Therefore (a) applies that if T is unitary then |c¢| = 1. If the underyling field
is R, then the only scalars with magnitude one are ¢ = +1.
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5.20.2. Prove the following statements about a real orthogonal n x n matrix
A. (a) If X is a real eigenvalue of A, then A = £1. (b) If X is a complex
eigenvalue of A, then the complex conjugate X is also an eigenvalue of A. (c)
If n is odd, then A has at least one real eigenvalue.

Solution. (a) Again by theorem 5.16, then any eigenvalue of an orthogonal
matrix has magnitude 1. The only scalars in R with that property are +1.
(b) Since A is a real matrix and all complex roots of real polynomials come in
conjugate pairs, this claim follows easily. (¢) If n is odd, then the characteristic
polynomial is off odd degree. All odd degree real polynomials have at least
one real solution by the intermediate value theorem.

5.20.3. Let V be a real Euclidean space of dimension n. An orthogonal trans-
formation T' : V — V with determinent 1 is called a rotation. If n is odd,
prove that 1 is an eigenvalue for 7.

Solution. Since V' is odd dimensional, then 7" has at least one real eigenvalue
A. Since T is orthogonal, then we know that |A| = 1, so that A\ = £1. Since the
complex eigenvalue come in conjugate pairs, then there are an odd number of
real eigenvalues. Since det A = 1, then -1 can only be a real eigenvalue an even
number of times. Since even numbers are not odd numbers, there must be a
left over real eigenvalue not equal to -1, so therefore A = 1 is an eigenvalue.

la.. For any square matrix, show that A + AT is symmetric and A — A7 is
skew symmetric.

Solution. Note that
(A+ AT = AT 4 AT" = AT 4 A,
For the skew-symmetric case
(A-ADT =AT —A=—-(A-AT).
1b.. Show that any square matrix can be expressed uniquely as a sum of one
symmetric and one skew-symmetric matrix.
Solution. We have at least one such decomposition by la since

1 1
A= 5(A + AT) + §(A — AT).
To show that this decomposition is unique, assume A = B+C = B’'+C" where
B, B" are symmetric and C, C” are skew-symmetric. Then B4+C = B'4+C" and

thus (B—B')+(C' —C") = 0. Note that B— B’ and C' — " are symmetric and



skew-symmetric respectively. Thus if we can show the 0 matrix has a unique
decomposition, then B — B’ =0 and C — C’" = 0 and the proof will be done.
Now let B + C' = 0 be such a decomposition of the 0 matrix. Taking
the transpose, we obtain that B — C' = 0 as well. Adding the equations
yields 2B = 0 so that B = 0 and therefore C' = 0. Thus 0 has a unique
decomposition, and by the above argument so does any general A.

lc.. Show that if n is odd, then any n x n skew-symmetric matrix has deter-
minent 0.

Solution. Recall that any real eigenvalue of a skew-symmetric matrix must
be 0. If n is odd, then the matrix A has at least one real eigenvalue. Since
det A =[], \;, and at least one A\; = 0, then det A = 0.

1d.. Show that any nonzero 3 x 3 skew-symmetric matrix has rank exactly 2.

Solution. This argument can be completed by writing out a 3 x 3 matrix and
explicitly examining the entries. Consider any skew-symmetric 3 x 3 matrix

0 a b
A=|—-a 0 ¢
-b —¢c 0

Since 3 is odd, then the previous problem implies that det A = 0 so that
rk(A) < 3. Since A # 0, then one of a, b, ¢ is not 0. Now we can examine each
case.

If a # 0, then the first and second columns are nonzero and independent,
so the rank is 2.

If b # 0, then the first and third columns are nonzero and independent, so
the rank is 2.

If ¢ # 0, then the second and third columns are nonzero and independent,
so the rank is 2.



