
Homework 3 Solutions
February 1, 2020

5.11.1. Determine whether a bunch of matrices are symmetric, skew-symmetric,
Hermitian, or skew-Hermitian.

Solution. a. symmetric b. skew-Hermitian c. Hermitian d. skew-symmetric

5.11.2. a. Verify that the 2 × 2 rotation matrix is an orthogonal matrix. b.
Prove that it actually rotates vectors by θ.

Solution. a. This follows from sin2+cos2 = 1. b. This follows from sin(a+b) =
sin(a) cos(b) + cos(a) sin(b) and cos(a+ b) = cos(a) cos(b)− sin(a) sin(b).

5.11.3. Show that a bunch of matrices do certain things the textbook is claim-
ing.

Solution. a. A(x, y, z) = (x, y,−z) which is the opposite side of the xy-plane.
b. A(x, y, z) = (x,−y,−z) which is on the opposite side of the x axis.
c. A(x, y, z) = (−x,−y,−z) which is on the opposite side of the origin.
d. This one keeps the same x but rotates y and z, which means you're rotating
around the x axis. Also note that (1, 0, 0) is an eigenvector with eigenvalue 1.
e. You multiply (b) and (d).

5.11.4. a. If a 2× 2 matrix A is proper, show that it is a rotation matrix for
some θ. b. Show that two matrices are not proper, and �nd all nonproper
2× 2 matrices.

Solution. a. If A =

[
a b
c d

]
is an orthogonal matrix, then (a, b) and (c, d) are

orthogonal unit vectors by the AAT = I criterion. Thus (c, d) = ±(−b, a). If
detA = 1, this restricts (c, d) = (−b, a). Since (a, b) is a unit vector, then it is
on the unit circle and has the form (cos(θ), sin(θ)). Therefore A is a rotation
matrix.
b. The two matrices are improper since they are orthogonal with determinant
-1. By the above argument, we can see all improper 2× 2 matrices are of the

form

[
a b
b −a

]
, namely a rotation matrix followed by a re�ection.

5.11.6, 5.11.7. Diagonalize some matrices.

Solution. 6. D =

[
−2i 0
0 2i

]
, C = 1√

2

[
−i i
1 1

]
7. D =

−4 0 0
0 1 0
0 0 3

 C =
[
v1 v2 v3

]
where v1 = 1√

35
(−3, 5, 1), v2 =

1√
10
(1, 0, 3), and v3 =

1√
14
(−3,−2, 1).

1



5.11.13. If A is a real skew-symmetric matrix, prove that I − A and I + A
are nonsingular and that (I − A)(I + A)−1 is orthogonal.

Solution. Since A is real skew-symmetric, then it has only real eigenvalue λ = 0
if any. Then λ = ±1 are not eigenvalues, so by de�nition A± I is nonsingular.
Now we show that B = (I −A)(I +A)−1 is orthogonal by showing BT = B−1.

This is true since

BT = (I − AT )(I + AT )−1 = (I + A)(I − A)−1 = B−1.

5.15.1, 5.15.5. For each of the following quadratic forms, �nd a symmetric
matrix A for it, �nd the eigenvalues of A, �nd an orthonormal set of eigenvec-
tors, and an orthogonal diagonalizing matrix.
1. 4x1 + 4x1x2 + x22
5. x21 + x1x2 + x1x3 + x2x3

Solution. 1. A =

[
4 2
2 1

]
with eigenvalues λ = 0, 5 and orthogonal eigenbasis

1√
5
(−1, 2) and 1√

5
(2, 1).

5. A = 1
2

2 1 1
1 0 1
1 1 0

 with eigenvalues λ = −1/2, 0, 3/2 and eigenbasis 1√
2
(0,−1, 1),

1√
3
(−1, 1, 1), and 1√

6
(2, 1, 1).

5.15.8, 5.15.9. Make a sketch of the following conic sections.
8. y2 − 2xy + 2x2 − 5 = 0
9. y2 − 2xy + 5x = 0

Solution. You �nd the eigenbasis, change the variables, then sketch whether
you get a rotated parabola, ellipse, or circle, hyperbola, or two lines. Did you
know that a parabola is just an ellipse with one end at in�nity?
8. rotated ellipse
9. rotated hyperbola

5.20.1a. Let T : V → V be the transformation given by T (x) = cx for some
�xed scalar c. Prove that T is unitary i� |c| = 1.

Solution. If T is unitary and has an eigenvalue λ then |λ| = 1 by theorem 5.16.
For T (x) = cx, c is an eigenvalue trivially, so that |c| = 1.

5.20.1b. If V is one-dimensional, prove that only unitary transformation on
V are those described in (a). If V is real, then c = ±1.
Solution. Since V is one-dimensional, then it has a basis element e, and there-
fore T (e) = ce for some scalar c. Since e is a basis T (x) = cx for all x ∈ V .
Therefore (a) applies that if T is unitary then |c| = 1. If the underyling �eld
is R, then the only scalars with magnitude one are c = ±1.
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5.20.2. Prove the following statements about a real orthogonal n× n matrix
A. (a) If λ is a real eigenvalue of A, then λ = ±1. (b) If λ is a complex
eigenvalue of A, then the complex conjugate λ is also an eigenvalue of A. (c)
If n is odd, then A has at least one real eigenvalue.

Solution. (a) Again by theorem 5.16, then any eigenvalue of an orthogonal
matrix has magnitude 1. The only scalars in R with that property are ±1.
(b) Since A is a real matrix and all complex roots of real polynomials come in
conjugate pairs, this claim follows easily. (c) If n is odd, then the characteristic
polynomial is o� odd degree. All odd degree real polynomials have at least
one real solution by the intermediate value theorem.

5.20.3. Let V be a real Euclidean space of dimension n. An orthogonal trans-
formation T : V → V with determinent 1 is called a rotation. If n is odd,
prove that 1 is an eigenvalue for T .

Solution. Since V is odd dimensional, then T has at least one real eigenvalue
λ. Since T is orthogonal, then we know that |λ| = 1, so that λ = ±1. Since the
complex eigenvalue come in conjugate pairs, then there are an odd number of
real eigenvalues. Since detA = 1, then -1 can only be a real eigenvalue an even
number of times. Since even numbers are not odd numbers, there must be a
left over real eigenvalue not equal to -1, so therefore λ = 1 is an eigenvalue.

1a.. For any square matrix, show that A + AT is symmetric and A − AT is
skew symmetric.

Solution. Note that

(A+ AT )T = AT + AT T
= AT + A.

For the skew-symmetric case

(A− AT )T = AT − A = −(A− AT ).

1b.. Show that any square matrix can be expressed uniquely as a sum of one
symmetric and one skew-symmetric matrix.

Solution. We have at least one such decomposition by 1a since

A =
1

2
(A+ AT ) +

1

2
(A− AT ).

To show that this decomposition is unique, assume A = B+C = B′+C ′ where
B,B′ are symmetric and C,C ′ are skew-symmetric. Then B+C = B′+C ′ and
thus (B−B′)+(C−C ′) = 0. Note that B−B′ and C−C ′ are symmetric and
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skew-symmetric respectively. Thus if we can show the 0 matrix has a unique
decomposition, then B −B′ = 0 and C − C ′ = 0 and the proof will be done.

Now let B + C = 0 be such a decomposition of the 0 matrix. Taking
the transpose, we obtain that B − C = 0 as well. Adding the equations
yields 2B = 0 so that B = 0 and therefore C = 0. Thus 0 has a unique
decomposition, and by the above argument so does any general A.

1c.. Show that if n is odd, then any n× n skew-symmetric matrix has deter-
minent 0.

Solution. Recall that any real eigenvalue of a skew-symmetric matrix must
be 0. If n is odd, then the matrix A has at least one real eigenvalue. Since
detA =

∏
i λi, and at least one λi = 0, then detA = 0.

1d.. Show that any nonzero 3× 3 skew-symmetric matrix has rank exactly 2.

Solution. This argument can be completed by writing out a 3× 3 matrix and
explicitly examining the entries. Consider any skew-symmetric 3× 3 matrix

A =

 0 a b
−a 0 c
−b −c 0

 .
Since 3 is odd, then the previous problem implies that detA = 0 so that
rk(A) < 3. Since A 6= 0, then one of a, b, c is not 0. Now we can examine each
case.

If a 6= 0, then the �rst and second columns are nonzero and independent,
so the rank is 2.

If b 6= 0, then the �rst and third columns are nonzero and independent, so
the rank is 2.

If c 6= 0, then the second and third columns are nonzero and independent,
so the rank is 2.
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