Homework 3 Solutions February 1, 2020

5.11.1. Determine whether a bunch of matrices are symmetric, skew-symmetric, Hermitian, or skew-Hermitian.

Solution. a. symmetric b. skew-Hermitian c. Hermitian d. skew-symmetric

5.11.2. a. Verify that the 2×2 rotation matrix is an orthogonal matrix. b. Prove that it actually rotates vectors by θ .

Solution. a. This follows from $\sin^2 + \cos^2 = 1$. b. This follows from $\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$ and $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$.

5.11.3. Show that a bunch of matrices do certain things the textbook is claiming.

Solution. a. A(x,y,z)=(x,y,-z) which is the opposite side of the xy-plane.

- b. A(x,y,z) = (x,-y,-z) which is on the opposite side of the x axis.
- c. A(x,y,z) = (-x,-y,-z) which is on the opposite side of the origin.
- d. This one keeps the same x but rotates y and z, which means you're rotating around the x axis. Also note that (1,0,0) is an eigenvector with eigenvalue 1. e. You multiply (b) and (d).
- **5.11.4**. a. If a 2×2 matrix A is proper, show that it is a rotation matrix for some θ . b. Show that two matrices are not proper, and find all nonproper 2×2 matrices.

Solution. a. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is an orthogonal matrix, then (a,b) and (c,d) are orthogonal unit vectors by the $AA^T = I$ criterion. Thus $(c,d) = \pm (-b,a)$. If $\det A = 1$, this restricts (c,d) = (-b,a). Since (a,b) is a unit vector, then it is on the unit circle and has the form $(\cos(\theta),\sin(\theta))$. Therefore A is a rotation matrix.

b. The two matrices are improper since they are orthogonal with determinant -1. By the above argument, we can see all improper 2×2 matrices are of the form $\begin{bmatrix} a & b \\ b & -a \end{bmatrix}$, namely a rotation matrix followed by a reflection.

5.11.6, **5.11.7**. Diagonalize some matrices.

Solution. 6.
$$D = \begin{bmatrix} -2i & 0 \\ 0 & 2i \end{bmatrix}, C = \frac{1}{\sqrt{2}} \begin{bmatrix} -i & i \\ 1 & 1 \end{bmatrix}$$

7. $D = \begin{bmatrix} -4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} C = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$ where $v_1 = \frac{1}{\sqrt{35}}(-3, 5, 1), v_2 = \frac{1}{\sqrt{10}}(1, 0, 3),$ and $v_3 = \frac{1}{\sqrt{14}}(-3, -2, 1).$

5.11.13. If A is a real skew-symmetric matrix, prove that I - A and I + A are nonsingular and that $(I - A)(I + A)^{-1}$ is orthogonal.

Solution. Since A is real skew-symmetric, then it has only real eigenvalue $\lambda = 0$ if any. Then $\lambda = \pm 1$ are not eigenvalues, so by definition $A \pm I$ is nonsingular. Now we show that $B = (I - A)(I + A)^{-1}$ is orthogonal by showing $B^T = B^{-1}$.

This is true since

$$B^{T} = (I - A^{T})(I + A^{T})^{-1} = (I + A)(I - A)^{-1} = B^{-1}.$$

- **5.15.1, 5.15.5**. For each of the following quadratic forms, find a symmetric matrix A for it, find the eigenvalues of A, find an orthonormal set of eigenvectors, and an orthogonal diagonalizing matrix.
- 1. $4x_1 + 4x_1x_2 + x_2^2$
- 5. $x_1^2 + x_1x_2 + x_1x_3 + x_2x_3$

Solution. 1. $A = \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}$ with eigenvalues $\lambda = 0, 5$ and orthogonal eigenbasis $\frac{1}{\sqrt{5}}(-1,2)$ and $\frac{1}{\sqrt{5}}(2,1)$.

$$\frac{1}{\sqrt{5}}(-1,2) \text{ and } \frac{1}{\sqrt{5}}(2,1).$$
5. $A = \frac{1}{2}\begin{bmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ with eigenvalues $\lambda = -1/2, 0, 3/2$ and eigenbasis $\frac{1}{\sqrt{2}}(0, -1, 1)$,
$$\frac{1}{\sqrt{3}}(-1, 1, 1), \text{ and } \frac{1}{\sqrt{6}}(2, 1, 1).$$

5.15.8, 5.15.9. Make a sketch of the following conic sections.

$$8. y^2 - 2xy + 2x^2 - 5 = 0$$

$$9. \ y^2 - 2xy + 5x = 0$$

Solution. You find the eigenbasis, change the variables, then sketch whether you get a rotated parabola, ellipse, or circle, hyperbola, or two lines. Did you know that a parabola is just an ellipse with one end at infinity?

- 8. rotated ellipse
- 9. rotated hyperbola
- **5.20.1a**. Let $T: V \to V$ be the transformation given by T(x) = cx for some fixed scalar c. Prove that T is unitary iff |c| = 1.

Solution. If T is unitary and has an eigenvalue λ then $|\lambda| = 1$ by theorem 5.16. For T(x) = cx, c is an eigenvalue trivially, so that |c| = 1.

5.20.1b. If V is one-dimensional, prove that only unitary transformation on V are those described in (a). If V is real, then $c = \pm 1$.

Solution. Since V is one-dimensional, then it has a basis element e, and therefore T(e) = ce for some scalar c. Since e is a basis T(x) = cx for all $x \in V$. Therefore (a) applies that if T is unitary then |c| = 1. If the underlying field is \mathbb{R} , then the only scalars with magnitude one are $c = \pm 1$.

5.20.2. Prove the following statements about a real orthogonal $n \times n$ matrix A. (a) If λ is a real eigenvalue of A, then $\lambda = \pm 1$. (b) If λ is a complex eigenvalue of A, then the complex conjugate $\overline{\lambda}$ is also an eigenvalue of A. (c) If n is odd, then A has at least one real eigenvalue.

Solution. (a) Again by theorem 5.16, then any eigenvalue of an orthogonal matrix has magnitude 1. The only scalars in \mathbb{R} with that property are ± 1 . (b) Since A is a real matrix and all complex roots of real polynomials come in conjugate pairs, this claim follows easily. (c) If n is odd, then the characteristic polynomial is off odd degree. All odd degree real polynomials have at least one real solution by the intermediate value theorem.

5.20.3. Let V be a real Euclidean space of dimension n. An orthogonal transformation $T:V\to V$ with determinent 1 is called a rotation. If n is odd, prove that 1 is an eigenvalue for T.

Solution. Since V is odd dimensional, then T has at least one real eigenvalue λ . Since T is orthogonal, then we know that $|\lambda| = 1$, so that $\lambda = \pm 1$. Since the complex eigenvalue come in conjugate pairs, then there are an odd number of real eigenvalues. Since det A = 1, then -1 can only be a real eigenvalue an even number of times. Since even numbers are not odd numbers, there must be a left over real eigenvalue not equal to -1, so therefore $\lambda = 1$ is an eigenvalue.

1a. For any square matrix, show that $A + A^T$ is symmetric and $A - A^T$ is skew symmetric.

Solution. Note that

$$(A + A^T)^T = A^T + A^{TT} = A^T + A.$$

For the skew-symmetric case

$$(A - A^T)^T = A^T - A = -(A - A^T).$$

1b.. Show that any square matrix can be expressed uniquely as a sum of one symmetric and one skew-symmetric matrix.

Solution. We have at least one such decomposition by 1a since

$$A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T}).$$

To show that this decomposition is unique, assume A = B + C = B' + C' where B, B' are symmetric and C, C' are skew-symmetric. Then B + C = B' + C' and thus (B - B') + (C - C') = 0. Note that B - B' and C - C' are symmetric and

skew-symmetric respectively. Thus if we can show the 0 matrix has a unique decomposition, then B - B' = 0 and C - C' = 0 and the proof will be done.

Now let B + C = 0 be such a decomposition of the 0 matrix. Taking the transpose, we obtain that B - C = 0 as well. Adding the equations yields 2B = 0 so that B = 0 and therefore C = 0. Thus 0 has a unique decomposition, and by the above argument so does any general A.

1c. Show that if n is odd, then any $n \times n$ skew-symmetric matrix has determinent 0.

Solution. Recall that any real eigenvalue of a skew-symmetric matrix must be 0. If n is odd, then the matrix A has at least one real eigenvalue. Since $\det A = \prod_i \lambda_i$, and at least one $\lambda_i = 0$, then $\det A = 0$.

1d. Show that any nonzero 3×3 skew-symmetric matrix has rank exactly 2. Solution. This argument can be completed by writing out a 3×3 matrix and explicitly examining the entries. Consider any skew-symmetric 3×3 matrix

$$A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}.$$

Since 3 is odd, then the previous problem implies that $\det A = 0$ so that $\operatorname{rk}(A) < 3$. Since $A \neq 0$, then one of a, b, c is not 0. Now we can examine each case.

If $a \neq 0$, then the first and second columns are nonzero and independent, so the rank is 2.

If $b \neq 0$, then the first and third columns are nonzero and independent, so the rank is 2.

If $c \neq 0$, then the second and third columns are nonzero and independent, so the rank is 2.