
Homework 4 Solutions
February 1, 2020

5.20.4. Given a real orthogonal matrix A with -1 as an eigenvalue of multi-
plicity k, prove that detA = (−1)k.
Solution. Since A is orthogonal, then for all eigenvalues λ, we have |λ| = 1.
Since A is real, the complex eigenvalues come in conjugate pairs, and the
determinant is calculated as follows

detA =
∏
i

λi = (1)
∏

1≤i≤k

−1 = (−1)k

5.20.6. If T is both unitary and Hermitian, prove that T 2 = I.

Solution. On the one hand, since T is unitary, then 〈T (x), T (y)〉 = 〈x, y〉. On
the other hand since T is Hermitian, then 〈T (x), y〉 = 〈x, T (y)〉. Then for all
x, y,

〈T 2(x), y〉 = 〈T (x), T (y)〉 = 〈x, y〉.

Since T 2(x) and x have all the same inner products, T 2(x) = x for all x so
T 2 = I.

8.3.1abd. Make a sketch of the level sets of some functions. (a) f(x, y) =
x2 + y2 (b) f(x, y) = exy (d) f(x, y, z) = x+ y + z

Solution. I'm not going to tex up a drawing so let me know if you want one.
(a) x2 + y2 = c is a circle of radius

√
c. (b) c = exy is empty for c ≤ 0 and

looks like a hyperbola for c > 0. (d) You get planes with normal (1, 1, 1) going
through the point (c, 0, 0).

2acl. Determine whether the following sets are open or not by drawing a
sketch. (a) x2 + y2 < 1 (c) |x|, |y| < 1 (l) |x| < 2, y > x2

Solution. I'm not going to tex up a drawing so let me know if you want one.
(a) This set is open, it is the open unit circle. (c) This set is open, it is an
in�nite box. (l) This set is open, it is the intersection of an open column with
the open set above the parabola.

8.3.3bd. Determine whether following sets are open or not. (b) |x|, |y|, |z| < 1
(d) |x| ≤ 1, |y|, |z| < 1.

Solution. (b) This set is open. For any (x, y, z) in S, pick r < min{|x−1|, |y−
1|, |z − 1|}. (d) This set is not open. If x = 1, for example (1, 0, 0), then no
ball around (1, 0, 0) is contained in S, the point (1 + r/2, 0, 0) will be in any
ball.
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8.3.4. (a) If A is an open set, and if x ∈ A, show that A − {x} is open. (b)
If A = (a, b) ⊂ R1, and B = [c, d] is a closed subinterval, show that A − B is
open.

Solution. (a) Let y ∈ A− {x}. Since y ∈ A, there exist a ball Br(y) ⊂ A. Let
|y − x| = r′. Pick r′′ < min{r, r′}. Then by construction Br′′(y) ⊂ A− {x} as
desired. (b) Similarly, for y ∈ A−B, then there exists a ball Br(y) ⊂ A. Pick
r′ = min{|y − c|, |y − d|, r} > 0. Then Br′(y) ⊂ A−B as desired.

8.3.9. Let S ⊆ Rn, with interior I and exterior E. Prove that I and E are
open. (b) Show that Rn = I ∪ ∂S ∪ E is a union of disjoint sets, and deduce
that ∂S is always closed.

Solution. (a) Let s ∈ I. By de�nition, there exists a ball Br(s) such that
all t ∈ Br(s) are also in S. We show that t ∈ I. Let ||t − s|| = r′, and
let r0 < r − r′. Then Br0(t) ⊂ Br(s). This implies that for all t′ ∈ Br′(t),
then t′ ∈ Br(S) which by de�nition implies that t′ ∈ S. Thus t ∈ I also by
de�nition.

Similarly for E. Let s ∈ E, so that there is a ball Br(s) which contains
no points of s. Then for any t ∈ Br(s), we show that t ∈ E. Again construct
Br0(t) inside of Br(s). No point of this ball around t is in S so t ∈ E.

(b) By de�nition, ∂S = (I ∪ E)c so it su�ces to show that E ∩ I = ∅.
This is trivial by de�ntion. If s ∈ I ∩ E, then there is an open ball contained
entirely in S and also contains no points of S. As long as S is nonempty, this
is a contradiction. So I and E are disjoint. Then Rn = I ∪∂S∪E is a disjoint
union.

Since ∂S = (I ∪ E)c and a union of open sets is open, then ∂S is closed.

8.5.2. Let the limit of f as (x, y)→ (a, b) exist in R2, and the denote the limit
by L. Assume limx→a f(x, y) and limy→b f(x, y) exist. Show that the iterated
limit exist and are both L.

Solution. Let g(x) = limy→b f(x, y).
By de�nition, we must show that there exists a radius r such that for all

x ∈ Br(a) that |g(x) − L| < ε. It is in fact equivalent to show that for all
sequences such that xi → a, then g(xi) → L. This is equivalence has a short
proof. One the one hand if the limit exists in the usual sense, then g(xi)→ L
by de�nition of the limit of a sequence. On the other hand, if the limit doesn't
exist, then for all r > 0, we can �nd an x ∈ Br(a) such that |g(x) − L| > ε.
Let r = 1/n, let the corresponding x = xn. Then the sequence xn → a
by construction, but g(xi) 6→ L. By contrapositive, the two de�nitions are
equivalent. This equivalence holds in general, so we can apply it the limit in
R2 as well.
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So, we use this second de�nition of convergence to solve the problem. Let
xn → a. For each xn, pick a yn such that |yn − b| < 1/n and such that
|f(xn, yn) − g(xn)| < ε/2 since the limit of f as y → b exists. Consider the
sequence (xi, yi), which converges to (a, b). Since this sequence converges to
(a, b), then f(xn, yn)→ L by equivalence above.

Now �x an N such that for all n ≥ N we have f(xn, yn)−L| < ε/2. Then
in this case

|g(xn)− L| ≤ |g(xn)− f(xn, yn)|+ |f(xn, yn)− L| < ε/2 + ε/2 = ε.

Thus g(xn)→ L as desired. The other iterated limit follows by the symmetric
argument.

8.5.4. Let f(x, y) = (x2y2)/(x2y2+(x−y2)) whenever the denominator doesn't
vanish. Show that the iterated limits both are 0, but that f 6→ 0 as (x, y)→ 0.

Solution. For x 6= 0, we can take limy→0 f(x, y) and simply plug in y = 0, to
get that the limit is 0. Then the limit as x→ 0 is also 0. A similar argument
for the other order holds. Now, we show that the limit in R2 doesn't exist.
On the one hand, if we approach along the line y = 0, we see that f(x, 0) = 0
in a neighborhood around the orgin. On the other hand if y = x, then we see
that f(x, x) = 1 in a neighborhood around the origin. Therefore there exists
no r > 0 such that for ||x− 0|| < r, that we have |f(x, y)− L| < ε for any L.
In particular |f(x, 0) − f(x, x)| = 1 arbitrarily close to the origin. Thus the
limit doesn't exist in R2.

8.5.6. Let f(x, y) = (x2 − y2)/(x2 + y2). Find the limit of f as (x, y) → 0
along y = mx. Is it possible to de�ne f(0, 0) so that f is continuous there?

Solution. Note that f(x,mx) = (x2−m2x2)/(x2+m2x2) = (1−m2)/(1+m2).
Since f has constant value along this line, we get that this expression is the
limit too. Since the limit depends on m, then we can conclude that the limit
of f as (x, y) → 0 does not exist in R2. Therefore there is no way to de�ne
f(0, 0) to make f continuous at the origin by de�nition of continuity.

8.9.1. A scalar �eld f is de�ned on Rn by the equation f(x) = a · x where a
is a constant vector. Compute f ′(x; y).

Solution. Note that f(x) =
∑

i aixi. Then each partial exists and is continuos
since it is constant. Therefore f is di�erentiable and thus f ′(x; y) exists and
has the formula f ′(x; y) = ∇f(x) · y. Computing this out, we obtain

f ′(x; y) = ∇f(x) · y =
∑
i

aiyi = a · y.
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8.9.3. Let T : Rn → Rn be a linear transformation. Compute the derivative
f ′(x; y) for the scalar �eld f(x) = x · T (x).
Solution. Fix the standard basis and let T = A. Then f(~x) = 〈x,Ax〉, which
has the written out expression f(~x) =

∑
i,j aijxixj. Then each partial ex-

ists and is continuous (its linear), so therefore f is di�erentiable and all the
directional derivatives exist. Writing everything out, I got something like this.

f ′(x; y) = ∇f(x) · y =
∑
j

yj

((∑
i 6=j

(aij + aji)xi

)
+ 2ajjxj

)
8.9.4,5,8,9. Compute the �rst order partials of the following functions. (4)
f(x, y) = x2 + y2 sin(xy) (5) f(x, y) =

√
x2 + y2 (8) f(~x) = a~x (9) f(~x) =∑

i,j aijxixj where aij = aji.

Solution. (4) ∇f = (2x + y3 cos(xy), 2y sin(xy) + xy2 cos(xy)) (5) ∇f(v) =
v/f(v) where v = (x, y) (8) Di(f) = ai = a · ei (9) Dk(f) = 2

∑
i akixi

8.9.10. Compute the partials of f(x, y) = x4+y4−4x2y2 and show the mixed
partials are equal.

Solution. Dx(f) = 4x3 − 8xy2, Dy(f) = 4y3 − 8x2y, and Dxy(f) = Dyx(f) =
−16xy.
8.9.18. Let v(r, t) = tne−r

2/(4t). Find a value of the constant n such that v
satis�es the following equation Dt(v) =

1
r2
Dr(r

2Dr(v)).

Solution. The left hand side is 4Dt(v) = tn−2e−r
2/(4t)(4nt+r2). The right hand

side is 1
4
tn−2e−r

2/(4t)(r2−6t). When equation the sides, most terms cancel and
the equation simpli�es to 4n = −6 which implies n = −3/2.
8.14.1ace. Find the gradient vector at each point at which it exists for the
scalar �elds de�ned by the following equations. (a) f(x, y) = x2 + y2 sin(xy)
(c) f(x, y, z) = x2y3z4 (e) f(x, y, z) = log(x2 + 2y2 − 3z2).

Solution. (a) This is a composition, product, and sum of globally di�erentiable
functions, and thus has gradient everywhere.

∇f = (2x+ y3 cos(xy), 2y sin(xy) + xy2 cos(xy))

(c) Similarly, this is di�erentiable everywhere and

∇f = (2xy3z4, 3x2y2z4, 4x2y3z3).

(e) Since log is di�erentiable only for positive reals, then we must restrict the
open set where x2 + 2y2 − 3z2 > 0. On this domain we have that

∇f(v) = 2v/f(v)

where v = (x, y, z).
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8.14.3. Find the points (x, y) and the directions for which the directional
derivative of f(x, y) = 3x2 + y2 has its largest value, if (x, y) is on the unit
circle.

Solution. We can maximize the directional derivative at each point on the unit
circle, and then �nd the points that achieve the maximum of that function.

The maximum directional derivative at a point x is achieved by the direc-
tion u = ∇f

||∇f || . In this case the angle between the direction and the gradient
is 0, therefore the dot product is maximized. In this case

Dumax(f) = ∇f ·
∇f
||∇f ||

= ||∇f ||.

For f(x, y) = 3x2 + y2, we obtain

Dumax(f) = ||(6x, 2y)|| =
√

36x2 + 4y2 = 2
√

9x2 + y2.

Thus we must maximize this function on the unit circle.
We parametrize the unit circle by (cos(t), sin(t)), so and rewrite f as

g(t) = 2
√

9 cos2(t) + sin2(t) = 2
√

8 cos2(t) + 1. We obtain the critical points
by solving g′(t) = 0. The numerator of the derivative is sin(t) cos(t), so it
su�ces to solve sin(t) cos(t) = 0. This occurs at t = kπ

2
for k ∈ Z. Taking

the double derivative, we obtain maxima at t = kπ for k ∈ Z, i.e. angles of
0 and π. This corresponds to the points (1, 0) and (−1, 0). The unit vector
which gives the maximum directional derivative at the points is also (1, 0) and
(−1, 0) by the above formula.

8.14.4. A di�erentiable scalar �eld f has at the points (1, 2) directional deriva-
tives 2 in the direction toward (2, 2) and -2 in the direction toward (1, 1). De-
termine the gradient vector at (1, 2) and compute the directional derivative in
the direction toward (4, 6).

Solution. Note that (2, 2)− (1, 2) = (1, 0) and (1, 1)− (1, 2) = −(0, 1). There-
fore the assumptions are the problem is that D1(f) = 2 and D2(f) = 2.
Therefore the gradient is (2, 2). Furthermore the directional derivative toward
(4, 6) is the directional derivative of the vector

u =
v

||v||

where v = (4, 6) − (1, 2) = (3, 4). Therefore u = (3/5, 4/5) and Du(f) =
(2, 2) · u = 14/5.

8.14.9. Assume f is di�erentiable at each point of an n-ball B(a). If f ′(x; y) =
0 for n independent vectors y1, . . . , yn for every x in B(a), prove that f is
constant on B(a).
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Solution. It su�ces to show that Df = 0 for all x ∈ B(a). Since f is di�eren-
tiable, then f ′(x; y) = ∇f · y exists for all y. Write y =

∑
i aiyi. Therefore,

f ′(x; y) = ∇f · y =
∑

a∇f · yi =
∑

aif
′(x; yi) = 0.

If y = ei, we see that
∂f
∂xi

= 0 for all i. Thus f is constant on B(a).
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