Homework 4 Solutions
February 24, 2019

8.14.10. Let f: R™ — R be differentiable in an n-ball B(a). Show that (a) if
Vf =0 for every x € B(a), then f is constant on B(a). (b) If f(z) < f(a) for
all z € B(a), then Vf(a) = 0.

Solution. (a) Let © € B(a). We show that f(z) = f(a). Since f is differen-
tiable, then f’(a;v) exists. Then by the MVT for derivatives of scalar fields,
Theorem 8.4, we have that there exists a t € [0, 1] such that f(a + (xr —a)) —
fla) = f'(a+t(x —a); (x — a)). Since a + t(x — a) € B(a), then the RHS is
0, so that f(a) = f(x).

(b) We show that f'(a;e;) = 0 for all i. By definition,

f/((l; ei) _ }llli% f(CL + he}z) - f(CL) )

Note that for sufficiently small h, the vector a+he; € B(a) so that f(a+he;) <
f(a). Therefore this is a limit of nonpositive values and if the limit exists, it
must be a nonpositive as well. Since f is differentiable at a, this limit exists
so that f'(a;e;) < 0. Similarly, —f'(a;e;) = limy_g W, which by a
similar argument must also be < 0. Therefore f'(a;e;) =0 and V f(a) = 0.
8.17.1ab. Let u = f(z,y). Set x = z(t) and y = y(¢). Then u = F(t). (a)
Use the chain rule to compute F”. (b) Similarly, compute F”(t).

Solution. (a) Let T'(t) = (z(t),y(t) so that F' = f oT. By the chain rule
wqugi of

axx’(t) + 2=y (t).

DF = Df(T(t))DT(t) = [g_i g_ﬂ [ dy

(b) To compute the double derivative, it suffices to compute D(D;f) and
D(Dyf). By similar calculations to above:
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Now by the product rule:



F"(t) = D(D, fz') + D(Dyfy)
= D(Dyf)2’ +2"Dif +y"Dsof +y'D(Dsf)
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8.17.2a. Use the previous exercise to compute the derivative of f(z(t),y(t)) =
x(t)? +y(t)? =12+t

Solution. F'(t) = (2t)(1) + (2t?)(2t) = 2t + 4¢3 and F"(t) = (0)(2t) + (2)(1)* +
2(1)(2t)(0) + (2)(26)* + (2)(2t?) = 2 + 12¢

8.17.3. Evaluate some directional derivatives.

Solution. (a) Note that on a sphere, the normal vector is just the vector itseslf.
Thus

£(2,2,1);(2,2,1)) = (3,-5,2) - (2,2,1) =6 — 10 + 2 = —2.

If we require the vector be a unit vector, divide it by 3.

(b) Similarly, for v on the sphere of radius 2, we can compute f'(v;v) =
(22, —2y,0) - v = 2(z* — y?). If the normal vector needs to be a unit vector,
then we obtain f'(v;v/2) = 2* — 3%

(c) First we find the intersection of the two curves. If 2? = 2% + y* and
2% = 222 + 2y? — 25 then on the intersection, we have 22 + y? = 25, which
is circle of radius 5, and therefore z = 5 as well. Thus a parametrization of
this intersection is ¢(t) = (5cos(t),5sin(t),5). The tangent vector is ¢'(t) =
(—5sin(t),5cos(t),0), and at (3,4,5), we obtain that the tangent vector is
v = (—4,3,0). Normalizing, v = (—4/5,3/5,0). Now

1'((3,4,5); (—4/5,3/5,0)) = (6,8, —10) - (—4/5,3/5,0) = 0.

8.17.4. (a) Find a vector V(z,y, z) normal to the surface z = ||(z,y,0)|| +
||(x,y,0)|]>. (b) Find the cosine of the angle 6 between V and the z-axis and
determine the limit cos(f) as (z,y,2) — (0,0,0).

Solution. The normal in this case is n = (=D, f, —D, f, 1) since we are on the
graph of a scalar field. Therefore

z Y
n=V(yz2) =—(———s +3zv2? + y?, ——— + 3y/ 22 + ¢, —1).
( ) (\/x2+y2 Va2 4 y? )



The cosine of the angle is cos(f) = Mol SO that
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8.17.6. Let f(x,y) = +/|zy|. (a) Show that D,f(0,0) = D,f(0,0) = 0 and
(b) determine whether the surface z = f(x,y) has a tangent plane at the
origin.

Solution. (a) By definition f'(0; (x,y)) = limj_o ~ |hi‘ry|hmy. For (z,y) = e;,
we see that the limit is 0.

(b) To show that z = f(z,y) has no tangent plane, we show that f is not
differentiable at 0. Indeed if we consider the directional derivative along (1, 1),

then
Al

£/0: (1,1)) = Jim Y-

which does not exist (since h can be positive or negative). In particular
f1(0;(1,1)) # Vf - (1,1). Thus f is not differentiable at 0 so there is no
tangent plane.

8.17.12. If Vf is always parallel to (x,y, z) show that f must assume equal
values at the points (0,0, a) and (0,0, —a).

Solution. Acknowledgments to Cameron for bringing this solution to my at-
tention.

Let ¢(t) = (0, asin(t), acos(t)) for t € [=1,1]. Then by the chain rule,

0

D(fop)=Df(pt)Dp(t) =V f(pt)) aCOS(?)
—asin(t

But Vf(¢(t)) = A(t)e(t), so that

D(fop)=At)p ¢ =0.
Therefore f has constant value on ¢, which implies that f is equivalued on
(0,0,a) and (0,0, —a).
8.22.1. Let t = g(x,y) so that F(t) = f(x,y), i.e. f = Fog. (a) Compute

Df in general. (b) Plug in F(t) = e5™® and g(x,y) = cos(z? + 3?) and see
that your formula works.



Solution. (a) Since f = F o g, by the chain rule
Df = DF(g(e,y))Dg = | 51| = |Flal.u)5e F'lolx.v)5].

(b) If F(t) = es™® and ¢ = cos(a? + y?), then f(x,y) = (s +v*)  Najve
chain rule says that

9 .

_f = 91 Sin(ZL‘Q + yQ) COS(COS(Z’Q + y2))681n(cos(ar2+y2))

Oz

8 <3 <

a—f = —2ysin(z? + y?) cos(cos(z? + y?)) e (os@+v7)
Y

which agrees with the above formula.

8.22.2. Let f(u,v) be a scalar field, let u = (x —y)/2, v = (z + y)/2, so that
f(u,v) = F(z,y). Find DF.
Solution. Let T(x,y) = (x —y,x +y)/2 so that F' = foT. Then

1

DF = Df(T(x,y)DT(z,y) = 3 (% 3] E —11]
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8.22.3. Let u = f(x,y) and let x = X(s,t), y = Y (s,1), so that u = F(s,t) =
f(X(s,t),Y(s,t)). (a) Compute DF. (b) Compute the double derivatives of
F.

Solution. (a) Let T'(s,t) = (X(s,t),Y(s,t)) so that F' = f o T. By the chain
rule

DF(s,t) = Df(T(s,t))DT(s,t)
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os ot

_ |9foX | 9foY Of0X | Of 0V
_|:6185+8y s 8:p8t+8y3t:|'

Each component is the desired partial.

(b) To find the mixed partials, we can consider for example

o, = p (L2 U

oxr Os + dy Os



One can plug in this function for f in the previous formula, yielding the desired
formula in the book. For example,
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(c) The other two formulas are similar.

8.22.5. Let ¢(r,0) = f(rcos(0),rsin(f)) for a scalar field f: R? — R. Express
the double derivative of ¢ in terms of the double derivatives of f(z,v).

Solution. (Apologies for the switching in notations. Had to do with copy-
pasting.) By Example 8.21, we have

% = &L cos(0) + 9L , sin(0) % = —r9l sin(0) + rg—g cos(6)

To compute the double derivatives, it suffices to compute D, (D, f), Do(D,f),
D,.(D,f), and Dy(D, f) and apply the product rule ad nauseum. By the above
rules applied to D, f and D, f we obtain

%g_i - % cos(f) + ggy sin(6)
%% _ _r% sin(f) + Taféfy cos ()
%% - aféfy cos(9) + %Sm@
%g_i _ _raa;afy sin(6) + r% cos ().

Now,
D2 = Dy (D, f cos(0)) + D, (D, f sin(0))
= D,D,fcos(8) + D,D,fsin(6)
D,Dyp = D,(—rD,fsin(f) + rD, f cos(8))
=—D,fsin(0) + D, D, f sin(d) + D, f cos(0) + rD, D, f cos(f)
Djo = Dg(—rD, fsin(6) + D, f cos(6))
= —rDyD, fsin(0) — rD,f cos(8) +rDyD, f cos(6) — rD, f sin(f)
where the mixed polar and cartesian derivatives in terms of the derivatives
of f are listed above.



8.22.14. Let f: R? - R?and g: R?* — R? be f(z,y) = (e**?,sin(y+2z)) and
g(u, v, w) = (u+ 2v* 4+ 3w?, 2v — u?). (a) Compute Df and Dg. (b) Compute
the composition h(u,v,w) = f(g(u,v,w)). (¢) Compute the Jacobian Dh.

Solution. (a)

T+2y 2
Df e 2cos(2x+y)} D :{ 1 4v 9w}

T 2et cos(2 + y) —2u 2 0

h(u,v,w) = f(g(u, v, w))
fu+20% + 3w’, 2v — u?)

(€u+2v2+3w3+41172u2’ sin(2v — u? + 2u + 4% + 6w3))

(c)

A—4uB 4A —20B 9w?A

Dh(u7vaw):Df(g(u7vaw))Dg(u7U7w): 24 —2uB 8A —vB 1811)214

where A = v 20" +3w+4v-20> 31 B — cos(20 — u® + 2u + 40 + 6w?).
8.22.15. Let f: R® — R? and g: R® — R3 be f(z,y,2) = (2% +y + 2,20 +
y + 2%) and g(u,v,w) = (vv?w? w?sin(v),u?e’). (a) Compute Df and Dg.
(b) Compute the composition h(u,v,w) = f(g(u,v,w)). (¢) Compute the
Jacobian Dh.

Solution. (a)

v2w?  2uow? 2uvw
211 B ; .
Df = Dg=1] 0 w?cos(v) 2wsin(v)
2 1 22 2ue? u?e? 0

h(u, v, w) = f(g<u7 v, w))
= f(uv*w? w?sin(v), u?e”)

= (v*v'w* + w?sin(v) + v?e’, 2uv*w® + w?sin(v) + u'e?”)

(c)
Dh(u,v,w) = Df(g(u,v,w))Dg(u, v, w)

2wt 4+ 2uet duPodwt + w? cos(v) + uPe’  dutvtw? + 2wsin(v)
T 20%0% + 4P duvw? + w?cos(v) + 2ute?  4uviw + 2w sin(v)
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8.24.1. Find a scalar field f satisfying both the following conditions: (a) the
partial derivatives exist and are 0 (b) the directional derivative at the origin in
the direction (1,1) exists and has the value 3. Explain why such an f cannot
be differentiable at the origin.

Solution. Let f(z,y) = ¥ and f(0,0) = 0. Then by definition, the directional

- - x+y
derivative

6h2U1U2 61]11)2
"(0;v) = 1i = :
f ( 71}) hlir(l) h2’U1 + h2U2 V1 + Vg
If v =(1,0) or (0,1), then f'(0;v) = 0 as desired. If v = (1,1), then f'(0;v) =
6/2 = 3 as desired.
This function cannot be differentiable at the origin, since f’(0;(1,1)) =

3 # (D1£(0), D2f(0)) - (1,1) = 0.

8.24.3. Let f(x,y) = xy®/ (2 + ¢°) if (z,y) # (0,0) and f(0,0) = 0. (a)
Prove that the derivative f/(0;a) exists for all a and compute its value. (b)
Determine whether or not f is continuous at the origin.

Solution. (a) Let a = (a1, az). By definition of the directional derivative,

1A, IERT (hal)(ha2)3
F0a) = e + (han))
— lim h4a1a2
h—0 h*(a3 + h3a$)
a1a9 . a9
— a_:f = a,_%'

This holds for a; # 0. If a; = 0, then it is clear from the expression that
f(0;a) = 0.

(b) However, despite every directional derivative existing, the function is not
continuous at the origin. Let (z,y) = (z,z). Then

4

x
i fw) = e T i T s =0
On the other hand, if we let o = 3?2, then
2 1 1
hmf(x y) = lim y———l
y—0 36 4 yf 2y

which does not exist. Therefore f is not continuous at the origin.



8.24.12. Let R = (x,y,2), let r = ||R||. If A and B are constant vectors,
show that (a) A-V(1/r)=—(A-R)/r* (b) B-V(A-V(1/r)) =3(A-r)(B-
N/ = (4B

Solution. (a) This equality can be seen by the usual rules of the derivative.

—1 1 A-R

1
AV(;) :(A2R)7(5B2+y2+22)3/2 == r3

(b) After telling you in class to write it out, I then did part (a) and realized
you could apply the quotient rule and use part (a).

B-V(A-vu/r)):B-v(_A'R)

r3

_ . VAR - (-ARV()
R (;6A - R)3Rr

3(A-R)(B-R) A-B

7D r3

Additional Problem 1.. A function G: R™ — R is called homogeneous of
degree 1 if G(tz) = tG(z) for all t > 0 and all z # 0 € R™. Suppose G is
homogeneous of degree 1 and continuous. (a) Show that G(0) = 0. (b) Show
that the directional derivative of G at 0 along y exists for all y € R™. (¢) Show
that G is differentiable at 0 iff it is linear.

Solution. (a) Since G(tx) = tG(z) for all ¢ > 0 and ||z|| > 0, we can fix x # 0

and consider
lim G(tx) = limtG(z).
t—0

t—0

Taking the limit on the left hand side, we obtain that the limit is 0 since G(z)
is constant with respect to ¢t. Taking the limit on the right side, by continuity
of G, we get G(0).

(b) Let v # 0, then we show that G'(0;v) exists by definition.



G(0 + hw) — G(0)

G'(0;0) = ’llin%) z
—
 lim G(hv)
h—0 h
= lim —hG(U)
h—0 h
= G(v)

Hence we conclude G'(0;v) = G(v).

(c¢) Assume G is differentiable. Then G(v) = G'(0;v) = DG(0)v, which is a
linear function . If G is linear, then it is differentiable trivially.



