
Homework 4 Solutions
February 24, 2019

8.14.10. Let f : Rn → R be di�erentiable in an n-ball B(a). Show that (a) if
∇f = 0 for every x ∈ B(a), then f is constant on B(a). (b) If f(x) ≤ f(a) for
all x ∈ B(a), then ∇f(a) = 0.

Solution. (a) Let x ∈ B(a). We show that f(x) = f(a). Since f is di�eren-
tiable, then f ′(a; v) exists. Then by the MVT for derivatives of scalar �elds,
Theorem 8.4, we have that there exists a t ∈ [0, 1] such that f(a+ (x− a))−
f(a) = f ′(a + t(x − a); (x − a)). Since a + t(x − a) ∈ B(a), then the RHS is
0, so that f(a) = f(x).

(b) We show that f ′(a; ei) = 0 for all i. By de�nition,

f ′(a; ei) = lim
h→0

f(a+ hei)− f(a)
h

.

Note that for su�ciently small h, the vector a+hei ∈ B(a) so that f(a+hei) ≤
f(a). Therefore this is a limit of nonpositive values and if the limit exists, it
must be a nonpositive as well. Since f is di�erentiable at a, this limit exists
so that f ′(a; ei) ≤ 0. Similarly, −f ′(a; ei) = limh→0

f(a)−f(a+hei)
h

, which by a
similar argument must also be ≤ 0. Therefore f ′(a; ei) = 0 and ∇f(a) = 0.

8.17.1ab. Let u = f(x, y). Set x = x(t) and y = y(t). Then u = F (t). (a)
Use the chain rule to compute F ′. (b) Similarly, compute F ′′(t).

Solution. (a) Let T (t) = (x(t), y(t) so that F = f ◦ T . By the chain rule

DF = Df(T (t))DT (t) =
[
∂f
∂x

∂f
∂y

] [x′(t)
y′(t)

]
=
∂f

∂x
x′(t) +

∂f

∂y
y′(t).

(b) To compute the double derivative, it su�ces to compute D(D1f) and
D(D2f). By similar calculations to above:

D

(
∂f

∂x

)
=
∂2f

∂x2
x′ +

∂2f

∂x∂y
y′

D

(
∂f

∂y

)
=

∂2f

∂x∂y
x′ +

∂2f

∂y2
y′

Now by the product rule:
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F ′′(t) = D(D1fx
′) +D(D2fy

′)

= D(D1f)x
′ + x′′D1f + y′′D2f + y′D(D2f)

=

(
∂2f

∂x2
x′ +

∂2f

∂x∂y
y′
)
x′ + x′′

∂f

∂x
+ y′′

∂f

∂y
+ y′

(
∂2f

∂x∂y
x′ +

∂2f

∂y2
y′
)

= x′′
∂f

∂x
+
∂2f

∂x2
(x′)2 + 2x′y′

∂2f

∂x∂y
+
∂2f

∂y2
(y′)2 + y′′

∂f

∂y

8.17.2a. Use the previous exercise to compute the derivative of f(x(t), y(t)) =
x(t)2 + y(t)2 = t2 + t4.

Solution. F ′(t) = (2t)(1)+ (2t2)(2t) = 2t+4t3 and F ′′(t) = (0)(2t)+ (2)(1)2+
2(1)(2t)(0) + (2)(2t)2 + (2)(2t2) = 2 + 12t2

8.17.3. Evaluate some directional derivatives.

Solution. (a) Note that on a sphere, the normal vector is just the vector itseslf.
Thus

f ′((2, 2, 1); (2, 2, 1)) = (3,−5, 2) · (2, 2, 1) = 6− 10 + 2 = −2.

If we require the vector be a unit vector, divide it by 3.

(b) Similarly, for v on the sphere of radius 2, we can compute f ′(v; v) =
(2x,−2y, 0) · v = 2(x2 − y2). If the normal vector needs to be a unit vector,
then we obtain f ′(v; v/2) = x2 − y2.

(c) First we �nd the intersection of the two curves. If z2 = x2 + y2 and
z2 = 2x2 + 2y2 − 25 then on the intersection, we have x2 + y2 = 25, which
is circle of radius 5, and therefore z = 5 as well. Thus a parametrization of
this intersection is ϕ(t) = (5 cos(t), 5 sin(t), 5). The tangent vector is ϕ′(t) =
(−5 sin(t), 5 cos(t), 0), and at (3, 4, 5), we obtain that the tangent vector is
v = (−4, 3, 0). Normalizing, v = (−4/5, 3/5, 0). Now

f ′((3, 4, 5); (−4/5, 3/5, 0)) = (6, 8,−10) · (−4/5, 3/5, 0) = 0.

8.17.4. (a) Find a vector V (x, y, z) normal to the surface z = ||(x, y, 0)|| +
||(x, y, 0)||3. (b) Find the cosine of the angle θ between V and the z-axis and
determine the limit cos(θ) as (x, y, z)→ (0, 0, 0).

Solution. The normal in this case is n = (−Dxf,−Dyf, 1) since we are on the
graph of a scalar �eld. Therefore

n = V (x, y, z) = −( x√
x2 + y2

+ 3x
√
x2 + y2,

y√
x2 + y2

+ 3y
√
x2 + y2,−1).
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The cosine of the angle is cos(θ) = v·w
||v||||w|| , so that

lim
(x,y,z)→(0,0,0)

cos(θ) = lim
x,y→(0,0)

1

||V ||
= lim

(x,y)→(0,0)

1√
1 + (1 + 3(x2 + y2)2)

=
1√
2
.

8.17.6. Let f(x, y) =
√
|xy|. (a) Show that Dxf(0, 0) = Dyf(0, 0) = 0 and

(b) determine whether the surface z = f(x, y) has a tangent plane at the
origin.

Solution. (a) By de�nition f ′(0; (x, y)) = limh→0

√
|h2xy|h
=

xy. For (x, y) = ei,
we see that the limit is 0.

(b) To show that z = f(x, y) has no tangent plane, we show that f is not
di�erentiable at 0. Indeed if we consider the directional derivative along (1, 1),
then

f ′(0; (1, 1)) = lim
h→0

√
|h2|
h

which does not exist (since h can be positive or negative). In particular
f ′(0; (1, 1)) 6= ∇f · (1, 1). Thus f is not di�erentiable at 0 so there is no
tangent plane.

8.17.12. If ∇f is always parallel to (x, y, z) show that f must assume equal
values at the points (0, 0, a) and (0, 0,−a).
Solution. Acknowledgments to Cameron for bringing this solution to my at-
tention.

Let ϕ(t) = (0, a sin(t), a cos(t)) for t ∈ [−1, 1]. Then by the chain rule,

D(f ◦ ϕ) = Df(ϕ(t))Dϕ(t) = ∇f(ϕ(t))

 0
a cos(t)
−a sin(t)

 .
But ∇f(ϕ(t)) = λ(t)ϕ(t), so that

D(f ◦ ϕ) = λ(t)ϕ · ϕ′ = 0.

Therefore f has constant value on ϕ, which implies that f is equivalued on
(0, 0, a) and (0, 0,−a).
8.22.1. Let t = g(x, y) so that F (t) = f(x, y), i.e. f = F ◦ g. (a) Compute
Df in general. (b) Plug in F (t) = esin(t) and g(x, y) = cos(x2 + y2) and see
that your formula works.
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Solution. (a) Since f = F ◦ g, by the chain rule

Df = DF (g(x, y))Dg =
[
∂g
∂x

∂g
∂y

]
=
[
F ′(g(x, y)) ∂g

∂x
F ′(g(x, y))∂g

∂y

]
.

(b) If F (t) = esin(t) and t = cos(x2 + y2), then f(x, y) = esin(cos(x
2+y2)). Naive

chain rule says that

∂f

∂x
= −2x sin(x2 + y2) cos(cos(x2 + y2))esin(cos(x

2+y2))

∂f

∂y
= −2y sin(x2 + y2) cos(cos(x2 + y2))esin(cos(x

2+y2))

which agrees with the above formula.

8.22.2. Let f(u, v) be a scalar �eld, let u = (x− y)/2, v = (x+ y)/2, so that
f(u, v) = F (x, y). Find DF .

Solution. Let T (x, y) = (x− y, x+ y)/2 so that F = f ◦ T . Then

DF = Df(T (x, y))DT (x, y) =
1

2

[
∂f
∂u

∂f
∂v

] [1 1
1 −1

]
=

1

2

[
∂f
∂u

+ ∂f
∂v

∂f
∂u
− ∂f

∂v

]
8.22.3. Let u = f(x, y) and let x = X(s, t), y = Y (s, t), so that u = F (s, t) =
f(X(s, t), Y (s, t)). (a) Compute DF . (b) Compute the double derivatives of
F .

Solution. (a) Let T (s, t) = (X(s, t), Y (s, t)) so that F = f ◦ T . By the chain
rule

DF (s, t) = Df(T (s, t))DT (s, t)

=
[
∂f
∂x

∂f
∂y

] [∂X
∂s

∂X
∂t

∂Y
∂s

∂Y
∂t

]
=
[
∂f
∂x

∂X
∂s

+ ∂f
∂y

∂Y
∂s

∂f
∂x

∂X
∂t

+ ∂f
∂y

∂Y
∂t

]
.

Each component is the desired partial.

(b) To �nd the mixed partials, we can consider for example

D(DsF ) = D

(
∂f

∂x

∂X

∂s
+
∂f

∂y

∂Y

∂s

)
.
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One can plug in this function for f in the previous formula, yielding the desired
formula in the book. For example,

∂2F

∂s2
=

∂

∂x

(
∂F

∂s

)
∂X

∂s
+

∂

∂y

(
∂F

∂t

)
∂Y

∂s

=
∂

∂x

(
∂f

∂x

∂X

∂s
+
∂f

∂y

∂Y

∂s

)
∂X

∂s
+

∂

∂y

(
∂f

∂x

∂X

∂t
+
∂f

∂y

∂Y

∂t

)
∂Y

∂s

=
∂f

∂x

∂2X

∂s2
+
∂2f

∂x2

(
∂X

∂s

)2

+ 2
∂X

∂s

∂Y

∂s

∂2f

∂x∂y
+
∂f

∂y

∂2Y

∂s2
+
∂2f

∂y2

(
∂Y

∂s

)2

.

(c) The other two formulas are similar.

8.22.5. Let ϕ(r, θ) = f(r cos(θ), r sin(θ)) for a scalar �eld f : R2 → R. Express
the double derivative of ϕ in terms of the double derivatives of f(x, y).

Solution. (Apologies for the switching in notations. Had to do with copy-
pasting.) By Example 8.21, we have

∂ϕ
∂r

= ∂f
∂x

cos(θ) + ∂f
∂y

sin(θ) ∂ϕ
∂θ

= −r ∂f
∂x

sin(θ) + r ∂f
∂y

cos(θ)

To compute the double derivatives, it su�ces to computeDr(Dxf),Dθ(Dxf),
Dr(Dyf), and Dθ(Dyf) and apply the product rule ad nauseum. By the above
rules applied to Dxf and Dyf we obtain

∂

∂r

∂f

∂x
=
∂2f

∂x2
cos(θ) +

∂2f

∂x∂y
sin(θ)

∂

∂θ

∂f

∂x
= −r∂

2f

∂x2
sin(θ) + r

∂2f

∂x∂y
cos(θ)

∂

∂r

∂f

∂y
=

∂2f

∂x∂y
cos(θ) +

∂2f

∂y2
sin(θ)

∂

∂θ

∂f

∂y
= −r ∂

2f

∂x∂y
sin(θ) + r

∂2f

∂y2
cos(θ).

Now,

D2
rϕ = Dr(Dxf cos(θ)) +Dr(Dyf sin(θ))

= DrDxf cos(θ) +DrDyf sin(θ)

DrDθϕ = Dr(−rDxf sin(θ) + rDyf cos(θ))

= −Dxf sin(θ) +DrDxf sin(θ) +Dyf cos(θ) + rDrDyf cos(θ)

D2
θϕ = Dθ(−rDxf sin(θ) + rDyf cos(θ))

= −rDθDxf sin(θ)− rDxf cos(θ) + rDθDyf cos(θ)− rDyf sin(θ)

where the mixed polar and cartesian derivatives in terms of the derivatives
of f are listed above.
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8.22.14. Let f : R2 → R2 and g : R3 → R2 be f(x, y) = (ex+2y, sin(y+2x)) and
g(u, v, w) = (u+ 2v2 + 3w3, 2v− u2). (a) Compute Df and Dg. (b) Compute
the composition h(u, v, w) = f(g(u, v, w)). (c) Compute the Jacobian Dh.

Solution. (a)

Df =

[
ex+2y 2 cos(2x+ y)
2ex+2y cos(2x+ y)

]
Dg =

[
1 4v 9w2

−2u 2 0

]
(b)

h(u, v, w) = f(g(u, v, w))

= f(u+ 2v2 + 3w3, 2v − u2)
= (eu+2v2+3w3+4v−2u2 , sin(2v − u2 + 2u+ 4v2 + 6w3))

(c)

Dh(u, v, w) = Df(g(u, v, w))Dg(u, v, w) =

[
A− 4uB 4A− 2vB 9w2A
2A− 2uB 8A− vB 18w2A

]
where A = eu+2v2+3w3+4v−2u2 and B = cos(2v − u2 + 2u+ 4v2 + 6w3).

8.22.15. Let f : R3 → R2 and g : R3 → R3 be f(x, y, z) = (x2 + y + z, 2x +
y + z2) and g(u, v, w) = (uv2w2, w2 sin(v), u2ev). (a) Compute Df and Dg.
(b) Compute the composition h(u, v, w) = f(g(u, v, w)). (c) Compute the
Jacobian Dh.

Solution. (a)

Df =

[
2x 1 1
2 1 2z

]
Dg =

v2w2 2uvw2 2uv2w
0 w2 cos(v) 2w sin(v)

2uev u2ev 0


(b)

h(u, v, w) = f(g(u, v, w))

= f(uv2w2, w2 sin(v), u2ev)

= (u2v4w4 + w2 sin(v) + u2ev, 2uv2w2 + w2 sin(v) + u4e2v)

(c)

Dh(u, v, w) = Df(g(u, v, w))Dg(u, v, w)

=

[
2uv4w4 + 2uev 4u2v3w4 + w2 cos(v) + u2ev 4u2v4w3 + 2w sin(v)
2v2w2 + 4u3e2v 4uvw2 + w2 cos(v) + 2u4e2v 4uv2w + 2w sin(v)

]
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8.24.1. Find a scalar �eld f satisfying both the following conditions: (a) the
partial derivatives exist and are 0 (b) the directional derivative at the origin in
the direction (1, 1) exists and has the value 3. Explain why such an f cannot
be di�erentiable at the origin.

Solution. Let f(x, y) = 6xy
x+y

and f(0, 0) = 0. Then by de�nition, the directional
derivative

f ′(0; v) = lim
h→0

6h2v1v2
h2v1 + h2v2

=
6v1v2
v1 + v2

.

If v = (1, 0) or (0, 1), then f ′(0; v) = 0 as desired. If v = (1, 1), then f ′(0; v) =
6/2 = 3 as desired.

This function cannot be di�erentiable at the origin, since f ′(0; (1, 1)) =
3 6= (D1f(0), D2f(0)) · (1, 1) = 0.

8.24.3. Let f(x, y) = xy3/(x3 + y6) if (x, y) 6= (0, 0) and f(0, 0) = 0. (a)
Prove that the derivative f ′(0; a) exists for all a and compute its value. (b)
Determine whether or not f is continuous at the origin.

Solution. (a) Let a = (a1, a2). By de�nition of the directional derivative,

f ′(0; a) = lim
h→0

(ha1)(ha2)
3

h((ha1)3 + (ha2)6)

= lim
h→0

h4a1a2
h4(a31 + h3a62)

=
a1a2
a31

=
a2
a21
.

This holds for a1 6= 0. If a1 = 0, then it is clear from the expression that
f ′(0; a) = 0.

(b) However, despite every directional derivative existing, the function is not
continuous at the origin. Let (x, y) = (x, x). Then

lim
x→0

f(x, x) = lim
x→0

x4

x3 + x6
= lim

x→0

x

1 + x3
= 0.

On the other hand, if we let x = y2, then

lim
y→0

f(x, y) = lim
y→0

y5

y6 + y6
=

1

2
lim
y→0

1

y

which does not exist. Therefore f is not continuous at the origin.
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8.24.12. Let R = (x, y, z), let r = ||R||. If A and B are constant vectors,
show that (a) A · ∇(1/r) = −(A · R)/r3 (b) B · ∇ (A · ∇(1/r)) = 3(A · r)(B ·
r)/r5 − (A ·B)/r3

Solution. (a) This equality can be seen by the usual rules of the derivative.

A · ∇
(
1

r

)
= (A · 2R)−1

2

1

(x2 + y2 + z2)3/2
= −A ·R

r3

(b) After telling you in class to write it out, I then did part (a) and realized
you could apply the quotient rule and use part (a).

B · ∇ (A · ∇(1/r)) = B · ∇
(
−A ·R
r3

)
= B · ∇(−A ·R)r

3 − (−A ·R)∇(r3)
r6

= B · −Ar
3 − (−A ·R)3Rr

r6

=
3(A ·R)(B ·R)

r5
− A ·B

r3

Additional Problem 1.. A function G : Rn → R is called homogeneous of
degree 1 if G(tx) = tG(x) for all t > 0 and all x 6= 0 ∈ Rn. Suppose G is
homogeneous of degree 1 and continuous. (a) Show that G(0) = 0. (b) Show
that the directional derivative of G at 0 along y exists for all y ∈ Rn. (c) Show
that G is di�erentiable at 0 i� it is linear.

Solution. (a) Since G(tx) = tG(x) for all t > 0 and ||x|| > 0, we can �x x 6= 0
and consider

lim
t→0

G(tx) = lim
t→0

tG(x).

Taking the limit on the left hand side, we obtain that the limit is 0 since G(x)
is constant with respect to t. Taking the limit on the right side, by continuity
of G, we get G(0).

(b) Let v 6= 0, then we show that G′(0; v) exists by de�nition.
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G′(0; v) = lim
h→0

G(0 + hv)−G(0)
h

= lim
h→0

G(hv)

h

= lim
h→0

hG(v)

h
= G(v)

Hence we conclude G′(0; v) = G(v).

(c) Assume G is di�erentiable. Then G(v) = G′(0; v) = DG(0)v, which is a
linear function . If G is linear, then it is di�erentiable trivially.
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