
Homework 6 Solutions
February 1, 2020

8.24.13. Find the set of points (a, b, c) such that (x−a)2+(y−b)2+(z−c)2 = 1
intersects x2 + y2 + z2 = 1 orthogonally.

Solution. By intersect orthogonally, the two tangent planes must be orthgonal,
i.e. the normal vectors are orthogonal. Note that n = (x, y, z) and n′ =
(x− a, y − b, z − c) for each sphere.

Let (x, y, z) lie on the intersection of the two spheres. By the above dis-
cussion, to �nd (a, b, c), we also must satisfy the additional equation

n · n′ = x(x− a) + y(y − b) + z(z − c) = 0.

Expanding and plugging in x2 + y2 + z2 = 1, we obtain the relation

ax+ by + cz = 1.

On the other hand, if one expands the equation for the other sphere, then

(x−a)2 +(y−b)2 +(c−z)2 = x2 +y2 +z2−2(ax+by+cz)+(a2 +b2 +c2) = 1.

Then we can conclude that a2 + b2 + c2 = 2. So any point on the sphere of
radius

√
2 has the desired property.

9.8.1. Let x + y = uv and xy = u − v, and write x, y implicitly as functions
of u, v. Calculate the possible derivatives.

Solution. Let F (u, v, x, y) = (x+ y − uv, xy − u+ v). The total derivative is

DF =

[
−v −u 1 1
−1 1 y x

]
.

By the implicit function theorem we have that[
xu xv
yu yv

]
= −

[
1 1
y x

]−1 [−v −u
−1 1

]
=

1

y − x

[
1− xv −ux− 1
vy − 1 uy + 1

]
.

This holds as long as y − x 6= 0.

9.8.2. Same as above except write x, v as functions of u, y.

Solution. Again by the implicit function theorem, we have[
xu xy
vu vy

]
=

[
−v 1
−1 x

]−1 [
1 −u
y 1

]
=

1

xv + y

[
x− y −ux− 1
1− vy −u− v

]
.

This holds when xv + y 6= 0.
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9.8.3. Two equations F (x, y, u, v) = 0 and G(x, y, u, v) = 0 determine x, y
implicitly as functions of u, v. Find formulas for the derivatives.

Solution. As before, the implicit function theorem applies as follows.

[
xu xv
yu yv

]
= − 1

∂(F,G)
∂(x,y)

[
Gx −Fy

−Gx Fy

] [
Fu fv
Gu Gv

]
= − 1

∂(F,G)
∂(x,y)

[
∂(F,G)
∂(u,y)

∂(F,G)
∂(v,y)

∂(F,G)
∂(u,x)

∂(F,G)
∂(v,x)

]

This holds when ∂(F,G)
∂(x,y)

is nonzero.

9.8.4. The intersection of 2x2 + 3y2 − z2 = 25 and x2 + y2 = z2 contains a
curve C passing through P = (

√
7, 3, 4). (a) Find a unit tangent vector T to

C at P using the implicit function theorem. (b) Find one by determining a
parametrization of C.

Solution. (a) We can write x, y as functions of z locally, and by the implicit
function theorem [

xz
yz

]
= −

[
4x 6y
2x 2y

]−1 [−2z
−2z

]
=

[−2z
x
−z
y

]
.

Plugging in P , we obtain the unit tangent vector is

T =
21√
5257

(
−8√

7
,
−4

3
, 1

)
.

(b) On the other hand, we can write a parametrization as follows. By sub-
stituting for 2x2, we �nd that y2 + z2 = 25, which has parametrization
5(cos(t), sin(t)). Then x2 = y2 − z2, so that

φ(t) = 5

(√
cos2(t)− sin2(t), cos(t), sin(t)

)
.

Taking the derivative and plugging in P , we obtain the same vector.

9.8.5. Find a normal to the surface F (u, v) = 0 where u = xy and v =√
x2 + z2. Plug in some numbers when (x, y, z) = (1, 1,

√
3), DuF (1, 2) = 1,

and DvF (1, 2) = 2.

Solution. Let f(x, y, z) = F (u, v) so that ∇(f) is the normal. Therefore it
su�ces to �nd Df , which by the chain rule is

Df =
[
D1F D2F

] [ y x 0
y/v 0 z/v

]
=
[
yDuF + x

v
DvF xDuF

z
v
DvF

]
.

Plugging in the numbers above, we obtain n = (2, 1,
√

3).
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9.8.12. Let F (x, y) = f(x+ g(y)) where f, g : U ⊆ R→ R. Find formulas for
the �rst and second partials and verify FxFxy = FyFxx.

Solution. Let T (x, y) = x + g(y), and h : U ⊆ R → R be any real valued
function. Then Fh = h ◦ T , so that by the chain rule[

(Fh)x
(Fh)y

]
=

[
h′(x+ g(y))

g′(y)h(x+ g(y))

]
.

Letting h = f , then we have the obvious formulae for Fx and Fy, and letting
h = f ′ and using the product rule, we obtain

D2F =

[
f ′′(x+ g(y)) g′(y)f ′′(x+ g(y))

g′(y)f ′′(x+ g(y)) f ′′(x+ g(y))g′(y)2 + f ′(x+ g(y))g′(y)

]
.

Indeed
FxFxy = f ′(x+ g(y))g′(y)f ′′(x+ g(y)) = FyFxx.

9.13.1,2,4,8,9. Classify the extrema of the following functions. (1) z = x2 +
(y − 1)2 (2) z = x2 − (y − 1)2 (4) z = (x− y + 1)2 (8) z = x2y3(6− x− y) (9)
z = x3 + y3 − 3xy

Solution. (1) The critical points can be found by solving ∇(f) = (2x, 2y−2) =
(0, 0) which clearly has only solution (0, 1). The Hessian at this point is 2I,
which is positive de�nite. Thus (0, 1) is local minimum.

(2) Similarly, we need to solve (2x,−2y + 2) = (0, 0) which still has solution
(0, 1). However, the Hessian matrix is[

2 0
0 −2

]
which has negative determinant. Therefore (0, 1) is a saddle point.

(4) To �nd the critical points, we solve ∇(f) = (2(x− y+ 1),−2(x− y+ 1)) =
(0, 0). These equations are dependent, and so every point such that y = x+ 1
is a critical point. The Hessian at a general point (x, y) is[

2 −2
−2 2

]
which is singular. Therefore the test is inconclusive. However, we see that
each of this points is a minimum, for if u = x− y+ 1, then the equation reads
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z = u2, which achieves minimum value exactly when u = 0, i.e. y = x+ 1.

(8) To �nd the critical points, we solve

(2xy3(6− x− y)− x2y3, 3x2y2(6− x− y)− x2y3) = (0, 0).

Pulling out a factor of xy2, then we see that if xy = 0, then (x, y) is a critical
point. If xy 6= 0, then we are left to solve

(2y(6−x−y)−xy, 3x(6−x−y)−xy) = (2(6−x−y)−x, 3(6−x−y)−y) = (0, 0).

Solving this linear system, we obtain (x, y) = (2, 3).

For (x, y) = (2, 3), then the Hessian implies that (2, 3) is a local max.

For any point xy = 0, we must check manually since the Hessian has deter-
minant 0 there. For (x, y) = (0, 0), then (r, r) and (−r,−r) have opposite sign
values, so (0, 0) is a saddle point. For (x, 0) with x 6= 6, one can check that
(x, ε) and (x,−ε) have values with opposite signs so that in this case, (x, y)
is a saddle point. Similarly, for (0, 6), we see that (±ε, 6) has opposite signed
values, so (0, 6) is a saddle point.

Now, at (6, 0), we can write any line through this point (except x = 6, but
that won't matter) as y = mx − 6m. Plugging this into z, we can rearrange
the equation to say

z = −m(m+ 1)x2(6− x)4

which has only negative values around (0, 6) for m > 0 and positive values for
m ∈ (−1, 0). Thus (6, 0) is a saddle point.

For any point (0, y) with y < 0 and y > 6, we see that ALL cross sections
across (0, y0) is of the form z = y30x

2(6 − y0 − x), which has only nonpositive
values in a neighborhood around (0, y0) in R2. Therefore, (0, y) is a maximum
in this range. For (0, y) with y ∈ (0, 6), then similarly the cross sections all
have nonnegative values so (0, y) is a maximum in this range.

(9) Taking the gradient and setting it equal to zero, we see the critical point
satisfy x2 = y and y2 = x. From this we obtain that y4 = y, which is satis�es
by only 0, 1 in R. If y = 0, then x = 0, and if y = 1 then x = 1. Therefore the
critical points are (0, 0) and (1, 1).
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The Hessian in general is

[
6x −3
−3 6y

]
, so at (0, 0), we have a saddle point

and at (1, 1) we have a minimum.

9.13.21. Consider the least squares error function

E(a, b) =
n∑

i=1

(f(xi)− yi)

for a given set of points (xi, yi) and f(x) = ax+b. Find the (a, b) that achieves
the minimum values of E.

Solution. We calculate the critical points of E as follows.

∇E(a, b) =

[∑
i 2(axi + b− yi)(xi)∑

i 2(axi + b− yi)

]
=

[
a (
∑

i x
2
i ) + b (

∑
i xi)−

∑
i xiyi

a (
∑

i xi) + nb−
∑

i yi

]
Setting the gradient equal to 0, then we must solve the linear system[∑

i x
2
i

∑
i xi∑

i xi n

] [
a
b

]
=

[∑
i xiyi∑
i yi

]
which solves to[

a
b

]
=

1

n
∑

i x
2
i − (

∑
i xi)

2

[
n
∑

i xiyi − (
∑

i xi) (
∑

i yi)
− (
∑

i xi) (
∑

i xiyi) + (
∑

i x
2
i ) (
∑

i yi)

]
To see that this point is a minimum, we note that the Hessian for all points

is the matrix for the above system.[∑
i x

2
i

∑
i xi∑

i xi n

]
The top left entry is positive since it is a magnitude of the vector x =
(x1, . . . , xn). The determinant is positive by the Cauchy-Schwartz inequality.

∑
i

xi ≤
∑
i

|xi| = (|x1|, . . . , |xn|) · (1, . . . , 1) ≤
√
n

(∑
i

|xi|2
)1/2

Squaring the above inequality, shows the determinant is positive. Therefore
the Hessian is positive de�nite, and the critical point is a minimum.
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9.13.24. Let a be a stationary point of a scalar �eld f with continuous second-
order partial derivatives in an n-ball B(a). Prove that f has a saddle point
at a if at least two of the diagonal entries of the Hessian matrix H(a) have
opposite signs.

Solution. By the second derivative test it su�ces to show that two eigenvalues
have opposite signs. Let H(a) = [aij] and let λi be the eigenvalues. Since
H(a) is symmetric, it is diagonalizable by an orthogonal matrix C = [cij].

Now, multiplying out A = CΛCT , we see that

aii = λ1c
2
i1 + · · ·+ λnc

2
in.

Thus the diagonal entries are linear combinations of the eigenvalues with pos-
itive coe�cients. Therefore if all λi have the same sign, then aii have the same
sign. By contrapositive, if aii have opposite signs then so do two of the λi.
This completes the proof.
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