Homework 6 Solutions February 1, 2020

8.24.13. Find the set of points (a, b, c) such that $(x-a)^2 + (y-b)^2 + (z-c)^2 = 1$ intersects $x^2 + y^2 + z^2 = 1$ orthogonally.

Solution. By intersect orthogonally, the two tangent planes must be orthgonal, i.e. the normal vectors are orthogonal. Note that $n = (x, y, z)$ and $n' =$ $(x - a, y - b, z - c)$ for each sphere.

Let (x, y, z) lie on the intersection of the two spheres. By the above discussion, to find (a, b, c) , we also must satisfy the additional equation

$$
n \cdot n' = x(x - a) + y(y - b) + z(z - c) = 0.
$$

Expanding and plugging in $x^2 + y^2 + z^2 = 1$, we obtain the relation

$$
ax + by + cz = 1.
$$

On the other hand, if one expands the equation for the other sphere, then

$$
(x-a)^2 + (y-b)^2 + (c-z)^2 = x^2 + y^2 + z^2 - 2(ax+by+cz) + (a^2 + b^2 + c^2) = 1.
$$

Then we can conclude that $a^2 + b^2 + c^2 = 2$. So any point on the sphere of Then we can conclude that $a^2 + b^2$
radius $\sqrt{2}$ has the desired property.

9.8.1. Let $x + y = uv$ and $xy = u - v$, and write x, y implicitly as functions of u, v . Calculate the possible derivatives.

Solution. Let $F(u, v, x, y) = (x + y - uv, xy - u + v)$. The total derivative is

$$
DF = \begin{bmatrix} -v & -u & 1 & 1 \\ -1 & 1 & y & x \end{bmatrix}.
$$

By the implicit function theorem we have that

$$
\begin{bmatrix} x_u & x_v \\ y_u & y_v \end{bmatrix} = -\begin{bmatrix} 1 & 1 \\ y & x \end{bmatrix}^{-1} \begin{bmatrix} -v & -u \\ -1 & 1 \end{bmatrix} = \frac{1}{y-x} \begin{bmatrix} 1 - xv & -ux - 1 \\ vy - 1 & uy + 1 \end{bmatrix}.
$$

This holds as long as $y - x \neq 0$.

9.8.2. Same as above except write x, v as functions of u, y .

Solution. Again by the implicit function theorem, we have

$$
\begin{bmatrix} x_u & x_y \\ v_u & v_y \end{bmatrix} = \begin{bmatrix} -v & 1 \\ -1 & x \end{bmatrix}^{-1} \begin{bmatrix} 1 & -u \\ y & 1 \end{bmatrix} = \frac{1}{xv + y} \begin{bmatrix} x - y & -ux - 1 \\ 1 - vy & -u - v \end{bmatrix}.
$$

This holds when $xv + y \neq 0$.

9.8.3. Two equations $F(x, y, u, v) = 0$ and $G(x, y, u, v) = 0$ determine x, y implicitly as functions of u, v . Find formulas for the derivatives.

Solution. As before, the implicit function theorem applies as follows.

$$
\begin{bmatrix} x_u & x_v \\ y_u & y_v \end{bmatrix} = -\frac{1}{\frac{\partial(F,G)}{\partial(x,y)}} \begin{bmatrix} G_x & -F_y \\ -G_x & F_y \end{bmatrix} \begin{bmatrix} F_u & f_v \\ G_u & G_v \end{bmatrix} = -\frac{1}{\frac{\partial(F,G)}{\partial(x,y)}} \begin{bmatrix} \frac{\partial(F,G)}{\partial(u,y)} & \frac{\partial(F,G)}{\partial(v,y)} \\ \frac{\partial(F,G)}{\partial(u,x)} & \frac{\partial(F,G)}{\partial(v,x)} \end{bmatrix}
$$

This holds when $\frac{\partial(F,G)}{\partial(x,y)}$ is nonzero.

9.8.4. The intersection of $2x^2 + 3y^2 - z^2 = 25$ and $x^2 + y^2 = z^2$ contains a **9.8.4**. The intersection of $2x^2 + 3y^2 - z^2 = 25$ and $x^2 + y^2 = z^2$ contains a curve C passing through $P = (\sqrt{7}, 3, 4)$. (a) Find a unit tangent vector T to C at P using the implicit function theorem. (b) Find one by determining a parametrization of C.

Solution. (a) We can write x, y as functions of z locally, and by the implicit function theorem

$$
\begin{bmatrix} x_z \\ y_z \end{bmatrix} = - \begin{bmatrix} 4x & 6y \\ 2x & 2y \end{bmatrix}^{-1} \begin{bmatrix} -2z \\ -2z \end{bmatrix} = \begin{bmatrix} \frac{-2z}{x} \\ \frac{-z}{y} \end{bmatrix}.
$$

Plugging in P, we obtain the unit tangent vector is

$$
T = \frac{21}{\sqrt{5257}} \left(\frac{-8}{\sqrt{7}}, \frac{-4}{3}, 1 \right).
$$

(b) On the other hand, we can write a parametrization as follows. By substituting for $2x^2$, we find that $y^2 + z^2 = 25$, which has parametrization $5(\cos(t), \sin(t))$. Then $x^2 = y^2 - z^2$, so that

$$
\phi(t) = 5\left(\sqrt{\cos^2(t) - \sin^2(t)}, \cos(t), \sin(t)\right).
$$

Taking the derivative and plugging in P, we obtain the same vector.

9.8.5 Find a normal to the surface $F(u, v) = 0$ where $u = xy$ and $v = \sqrt{2\pi} \sqrt{2\pi}$ $x^2 + z^2$. Plug in some numbers when $(x, y, z) = (1, 1, \sqrt{3})$, $D_u F(1, 2) = 1$, and $D_vF(1, 2) = 2$.

Solution. Let $f(x, y, z) = F(u, v)$ so that $\nabla(f)$ is the normal. Therefore it suffices to find Df , which by the chain rule is

$$
Df = [D_1F \quad D_2F] \begin{bmatrix} y & x & 0 \\ y/v & 0 & z/v \end{bmatrix} = [yD_uF + \frac{x}{v}D_vF \quad xD_uF \quad \frac{z}{v}D_vF].
$$

Plugging in the numbers above, we obtain $n = (2, 1, 1)$ 3).

9.8.12. Let $F(x, y) = f(x + g(y))$ where $f, g: U \subseteq \mathbb{R} \to \mathbb{R}$. Find formulas for the first and second partials and verify $F_xF_{xy} = F_yF_{xx}$.

Solution. Let $T(x, y) = x + g(y)$, and $h : U \subseteq \mathbb{R} \to \mathbb{R}$ be any real valued function. Then $F_h = h \circ T$, so that by the chain rule

$$
\begin{bmatrix}\n(F_h)_x \\
(F_h)_y\n\end{bmatrix} =\n\begin{bmatrix}\nh'(x+g(y)) \\
g'(y)h(x+g(y))\n\end{bmatrix}.
$$

Letting $h = f$, then we have the obvious formulae for F_x and F_y , and letting $h = f'$ and using the product rule, we obtain

$$
D^{2}F = \begin{bmatrix} f''(x+g(y)) & g'(y)f''(x+g(y)) \\ g'(y)f''(x+g(y)) & f''(x+g(y))g'(y)^{2} + f'(x+g(y))g'(y) \end{bmatrix}.
$$

Indeed

$$
F_x F_{xy} = f'(x + g(y))g'(y)f''(x + g(y)) = F_y F_{xx}.
$$

9.13.1,2,4,8,9. Classify the extrema of the following functions. (1) $z = x^2 +$ $(y-1)^2$ (2) $z = x^2 - (y-1)^2$ (4) $z = (x-y+1)^2$ (8) $z = x^2y^3(6-x-y)$ (9) $z = x^3 + y^3 - 3xy$

Solution. (1) The critical points can be found by solving $\nabla(f) = (2x, 2y-2) =$ $(0, 0)$ which clearly has only solution $(0, 1)$. The Hessian at this point is 2*I*, which is positive definite. Thus $(0, 1)$ is local minimum.

(2) Similarly, we need to solve $(2x, -2y + 2) = (0, 0)$ which still has solution (0, 1). However, the Hessian matrix is

$$
\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}
$$

which has negative determinant. Therefore $(0, 1)$ is a saddle point.

(4) To find the critical points, we solve $\nabla(f) = (2(x-y+1), -2(x-y+1)) =$ $(0,0)$. These equations are dependent, and so every point such that $y = x + 1$ is a critical point. The Hessian at a general point (x, y) is

$$
\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}
$$

which is singular. Therefore the test is inconclusive. However, we see that each of this points is a minimum, for if $u = x - y + 1$, then the equation reads $z = u^2$, which achieves minimum value exactly when $u = 0$, i.e. $y = x + 1$.

 (8) To find the critical points, we solve

$$
(2xy3(6-x-y)-x2y3, 3x2y2(6-x-y)-x2y3) = (0,0).
$$

Pulling out a factor of xy^2 , then we see that if $xy = 0$, then (x, y) is a critical point. If $xy \neq 0$, then we are left to solve

$$
(2y(6-x-y)-xy,3x(6-x-y)-xy) = (2(6-x-y)-x,3(6-x-y)-y) = (0,0).
$$

Solving this linear system, we obtain $(x, y) = (2, 3)$.

For $(x, y) = (2, 3)$, then the Hessian implies that $(2, 3)$ is a local max.

For any point $xy = 0$, we must check manually since the Hessian has determinant 0 there. For $(x, y) = (0, 0)$, then (r, r) and $(-r, -r)$ have opposite sign values, so $(0,0)$ is a saddle point. For $(x, 0)$ with $x \neq 6$, one can check that (x, ε) and $(x, -\varepsilon)$ have values with opposite signs so that in this case, (x, y) is a saddle point. Similarly, for $(0,6)$, we see that $(\pm \varepsilon, 6)$ has opposite signed values, so $(0, 6)$ is a saddle point.

Now, at $(6, 0)$, we can write any line through this point (except $x = 6$, but that won't matter) as $y = mx - 6m$. Plugging this into z, we can rearrange the equation to say

$$
z = -m(m+1)x^2(6-x)^4
$$

which has only negative values around $(0, 6)$ for $m > 0$ and positive values for $m \in (-1,0)$. Thus $(6,0)$ is a saddle point.

For any point $(0, y)$ with $y < 0$ and $y > 6$, we see that ALL cross sections across $(0, y_0)$ is of the form $z = y_0^3 x^2 (6 - y_0 - x)$, which has only nonpositive values in a neighborhood around $(0, y_0)$ in \mathbb{R}^2 . Therefore, $(0, y)$ is a maximum in this range. For $(0, y)$ with $y \in (0, 6)$, then similarly the cross sections all have nonnegative values so $(0, y)$ is a maximum in this range.

(9) Taking the gradient and setting it equal to zero, we see the critical point satisfy $x^2 = y$ and $y^2 = x$. From this we obtain that $y^4 = y$, which is satisfies by only 0, 1 in R. If $y = 0$, then $x = 0$, and if $y = 1$ then $x = 1$. Therefore the critical points are $(0, 0)$ and $(1, 1)$.

The Hessian in general is $\begin{bmatrix} 6x & -3 \\ 3 & 6x \end{bmatrix}$ −3 6y 1 , so at $(0, 0)$, we have a saddle point and at $(1, 1)$ we have a minimum.

9.13.21. Consider the least squares error function

$$
E(a, b) = \sum_{i=1}^{n} (f(x_i) - y_i)
$$

for a given set of points (x_i, y_i) and $f(x) = ax + b$. Find the (a, b) that achieves the minimum values of E.

Solution. We calculate the critical points of E as follows.

$$
\nabla E(a,b) = \left[\frac{\sum_{i} 2(ax_i + b - y_i)(x_i)}{\sum_{i} 2(ax_i + b - y_i)}\right] = \left[a\left(\frac{\sum_{i} x_i^2}{a\left(\sum_{i} x_i\right) + nb - \sum_{i} x_i y_i}\right)\right]
$$

Setting the gradient equal to 0, then we must solve the linear system

$$
\begin{bmatrix} \sum_{i} x_{i}^{2} & \sum_{i} x_{i} \ \sum_{i} x_{i} & n \end{bmatrix} \begin{bmatrix} a \ b \end{bmatrix} = \begin{bmatrix} \sum_{i} x_{i} y_{i} \ \sum_{i} y_{i} \end{bmatrix}
$$

which solves to

$$
\begin{bmatrix} a \\ b \end{bmatrix} = \frac{1}{n \sum_i x_i^2 - (\sum_i x_i)^2} \left[-\left(\sum_i x_i y_i - (\sum_i x_i) (\sum_i y_i) \right) \right]
$$

To see that this point is a minimum, we note that the Hessian for all points is the matrix for the above system.

$$
\left[\begin{matrix} \sum_{i} x_{i}^{2} & \sum_{i} x_{i} \\ \sum_{i} x_{i} & n \end{matrix}\right]
$$

The top left entry is positive since it is a magnitude of the vector $x =$ (x_1, \ldots, x_n) . The determinant is positive by the Cauchy-Schwartz inequality.

$$
\sum_{i} x_{i} \leq \sum_{i} |x_{i}| = (|x_{1}|, \ldots, |x_{n}|) \cdot (1, \ldots, 1) \leq \sqrt{n} \left(\sum_{i} |x_{i}|^{2} \right)^{1/2}
$$

Squaring the above inequality, shows the determinant is positive. Therefore the Hessian is positive definite, and the critical point is a minimum.

9.13.24. Let a be a stationary point of a scalar field f with continuous secondorder partial derivatives in an *n*-ball $B(a)$. Prove that f has a saddle point at a if at least two of the diagonal entries of the Hessian matrix $H(a)$ have opposite signs.

Solution. By the second derivative test it suffices to show that two eigenvalues have opposite signs. Let $H(a) = [a_{ij}]$ and let λ_i be the eigenvalues. Since $H(a)$ is symmetric, it is diagonalizable by an orthogonal matrix $C = [c_{ij}]$.

Now, multiplying out $A = C\Lambda C^{T}$, we see that

$$
a_{ii} = \lambda_1 c_{i1}^2 + \dots + \lambda_n c_{in}^2.
$$

Thus the diagonal entries are linear combinations of the eigenvalues with positive coefficients. Therefore if all λ_i have the same sign, then a_{ii} have the same sign. By contrapositive, if a_{ii} have opposite signs then so do two of the λ_i . This completes the proof.