Homework 7 Solutions February 1, 2020

9.15.1. Find the extreme values of $z = xy$ with the constraint $x + y = 1$. Solution. By Lagrange multipliers, we must solve

$$
x + y = 1
$$
 $(y, x) = \lambda(1, 1).$

Quickly, it is seen that $\lambda = x = y$, so that $2\lambda = 1$ and $\lambda = 1/2$. Therefore $(x, y) = (1/2, 1/2)$ and $z = 1/4$ is the extreme value.

9.15.5. Find the extreme values of the scalar field $f(x, y, z) = x - 2y + 2z$ on the sphere $x^2 + y^2 + z^2 = 1$.

Solution. By Lagrange multipliers, we must solve the system

$$
x^{2} + y^{2} + z^{2} = 1
$$

(1, -2, 2) = λ (2x, 2y, 2z).

Solving for x, y, z in terms of λ , then plugging these expressions into g, we obtain $\lambda = \pm 3/2$. Therefore $x = \pm 1/3$, $y = \pm 2/3$, and $z = \pm 2/3$.

9.15.7. Find the shortest distance to the point $(1,0)$ to the parabola $y^2 = 4x$. Solution. The function that must be minimized is

$$
f(x, y) = (x - 1)^2 + y^2
$$

with the constraint $y^2 - 4x = 0$. By LM, then

$$
(2x - 2, 2y) = \lambda(-4, 2y)
$$

so that $2y(\lambda - 1) = 0$. If $\lambda = 1$, then $x = -1$ which is impossible due to the constraint, so therefore $y = 0$. In this case $x = 0$, so distance is minimized at the origin.

9.15.8. Find the points on the curve defined by $x^2 - xy + y^2 - z^2 = 1$ and $x^2 + y^2 = 1$ which are nearest to the origin.

Solution. By eliminating variables, we obtain the curve is on the surface $z^2 =$ xy with $x^2 + y^2 = 1$. Therefore we can parametrize the curve as

$$
\gamma(t) = (\cos(t), \sin(t), \sqrt{\cos(t)\sin(t)})
$$

for appropriate t Then we wish to minimize the function

$$
||\gamma(t)||^2 = \cos(t)\sin(t) + 1.
$$

Taking the derivative and setting equal to 0, we get that $t = \pi/4, 3\pi/4, 5\pi/4, 7\pi/4$. It is clear from plugging in that maximum distances or non well-defined points occur at these points. Therefore we check the boundaries at $t = n\pi/2$ for $n \in 0, 1, 2, 3$, and these yield minima.

9.15.13. Use Lagrange multipliers to find the extreme distances on the ellipse $x^2 + 4y^2 = 4$ to the line $x + y = 4$.

 $Solution.$ By the distance to a line formula, it suffices to minimize

$$
f(x,y) = \frac{1}{2}(x+y-4)^2
$$

with respect to the constraint $g(x, y) = x^2 + 4y^2 - 4$. Lagrange multipliers implies that we can solve the system $g(x, y) = 0$ and $\nabla f = \lambda \nabla g$. The second equation gives us that

$$
(x + y - 4, x + y - 4) = \lambda(2x, 8y)
$$

so that $\lambda(x-4y)=0$. If $\lambda=0$, then the whole ellipse is a solution, so throw away this possibility. Therefore $x = 4y$. Plugging into the ellipse equation, we obtain the two points $(x, y) = \pm (4, 1) / \sqrt{5}$. Therefore the minimum and maximum distances are $(4 + \sqrt{5}) / \sqrt{2}$ and $(4 - \sqrt{5}) / \sqrt{2}$. √ 2 and (4 − √ 5)/ √ 2.

10.5.2,7,8. Calculate a couple line integrals.

 $\boldsymbol{0}$

Solution. (2) In this problem, $F = (2a-y, x)$ and $\gamma(t) = a(t-\sin(t), 1-\cos(t))$. Z γ $F = \int^{2\pi}$ $\boldsymbol{0}$ $(2a - a + a\cos(t), at - a\sin(t)) \cdot a(1 - \cos(t), \sin(t)) dt$ $=$ $\int_{0}^{2\pi}$ $a^2t\sin(t) dt = -2\pi a^2$

(7) In this problem, $F = (x, y, xz - y)$ and $\gamma(t) = (1, 2, 4)t$ for $t \in [0, 1]$. Then by definition

$$
\int_{\gamma} F = \int_0^1 (t, 2t, 4t^2 - 2t) \cdot (1, 2, 4) dt
$$

$$
= \int_0^1 16t^2 - 3t dt = 23/6.
$$

(8) In this problem $F = (x, y, xz - y)$ and $\gamma(t) = (t^2, 2t, 4t^3)$ for $t \in [0, 1]$.

$$
\int_{\gamma} F = \int_0^1 (t^2, 2t, 4t^5 - 2t) \cdot (2t, 2, 12t^2) dt
$$

$$
= \int_0^1 48t^7 + 4t - 22t^3 dt = 5/2
$$

10.5.10. Integrate the vector field $F = (x + y, x - y)/(x^2 + y^2)$ on the circle of radius a centered at the origin traversed counterclockwise.

Solution. The parametrization is $\gamma(t) = a(\cos(t), \sin(t))$, and so by the line integral definition

$$
\int_{\gamma} F = \int_{0}^{2\pi} \frac{a}{a^2} (\cos(t) + \sin(t), \cos(t) - \sin(t)) \cdot a(-\sin(t), \cos(t)) dt
$$

$$
= \int_{0}^{2\pi} -\sin(t)\cos(t) - \sin^2(t) + \cos^2(t) - \sin(t)\cos(t) = 0
$$