
Midterm 3 Review
April 17, 2018

1. Let x = u2 − v2 and y = 2uv and let u2 + v2 ≤ 1 and u, v ≥ 0. Find the
x and y range D and evaluate

∫∫
D 1 dx dy.

Solution. First, we find the x, y range D. The region for (u, v) coordinates
is a quarter of a circle in the first quadrant. For (u, v) = (u, 0), then (x, y) =
(u2, 0). For (u, v) = (0, v), then (x, y) = (−v2, 0). Thus the two lines of the
quarter circle get sent to a horizontal line segment on the x-axis from -1 to
1. Now if (u, v) lies on the circle part, we let (u, v) = (cos t, sin t) from t = 0
to t = π/2. Then (x, y) = (cos2 t− sin2 t, 2 cos t sin t) = (cos 2t, sin 2t). Then
we see that the quarter circle part gets sent a half circle part! Thus D is the
upper half of a circle. Thus

∫∫
D 1 dx dy = π/2.

2. Find the volume of a cone with base radius r and height h using a triple
integral.

Solution. If C is the cone and D is the circle of radius r in the xy-plane then

∫∫∫
C

1 dV =
∫∫

D

∫ h− h
r

√
x2+y2

0
1 dz dx dy =

∫ 2π

0

∫ r

0

(
h− h

r
ρ

)
(ρ) dρ dθ = 1

3πr
2h

3. Calculate
∫∫
S∇ × F · dS where F (x, y, z) = (x3,−y3, 0) and S is the

hemisphere x2 + y2 + z2 = 1 and x ≥ 0.

Solution. By Stokes’ theorem,∫∫
S
∇× F · dS =

∫
∂S
F · ds

so we need to parametrize the unit circle in the yz-plane. This is c(t) =
(0, cos t, sin t) with the wrong orientation, so we introduce a negative sign.
The integral is

−
∫
∂S
F ·ds = −

∫ 2π

0
(0, 1−cos3 t, 0)·(0,− sin t, cos t) dt =

∫ 2π

0
− sin t cos3 t dt = 0.

4. Let S be the triangle with corners (1, 0, 0), (0, 1, 0), and (0, 0, 1) with
outward normal. Let F (x, y, z) = (yz, xz, xy). Find

∫∫
S F · dS.
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Solution. Parametrize S by (x, y, 1 − x − y) where x, y ≥ 0 and x + y ≤ 1.
The normal is (1, 1, 1) constantly, so∫∫

S
F · dS =

∫ 1

0

∫ x

0
y(1− x− y) + x(1− x− y) + xy dy dx = 1/8.

Here’s the hard way, which I for some reason did first. Don’t do it this way.
Notice that F = ∇×H where H(x, y, z) = (x4 (z2−y2), y4(x2−z2), z4(y2−x2)).
Then let c1, c2, and c3 be the sides of the triangle. So that∫∫

S
F · dS =

∫
c1+c2+c3

H · ds

Doing all of these integrals you get the answer is 1/8.

5. Let S be the surface z = xy + 1 graphed on the top right quarter of the
unit disc with boundary ∂S. Let F (x, y, z) = (x, 2z, y). Find∫

∂S
F · ds.

Solution. By Stokes’ theorem, we can find the integral of ∇× F on S with
outward normal. Indeed the parametrization

Φ(r, t) = (r cos t, r sin t, r2 cos t sin t+ 1)

for 0 ≤ r ≤ 1 and 0 ≤ t ≤ π/2 is outward pointing. The normal vector is

n = ∂Φ
∂r
× ∂Φ

∂t
= (cos t, sin t, r ∗ sin 2t)× (−r sin t, r cos t, r2 cos 2t)

= (−r2 sin t,−r2 cos t, r)

Also ∇× F = (−1, 0, 0). So the integral is∫
∂S
F · ds =

∫∫
S
∇× F · dS

=
∫ π/2

0

∫ 1

0
(−1, 0, 0) · (−r2 sin t,−r2 cos t, r) dr dt

=
(∫ π/2

0
sin t dt

)(∫ 1

0
r2 dr

)
= 1/3

6. Find the area of the ellipse
(
x
a

)2
+
(
y
b

)2
= 1 using Green’s theorem.
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Solution. Let D be the filled in ellipse and E be the boundary ellipse. By
Greens theorem∫∫

D
1 dA = 1

2

∫
E
y dx− x dy = 1

2

∫ 2π

0
ab cos2 t+ ab sin2 t dt = πab.

7. Let S be the surface parametrized by Φ(u, v) = (2 sin(u), 3 cos(u), v) for
0 ≤ u ≤ 2π and 0 ≤ v ≤ 1. Let F (x, y, z) = (x, y, z). Find (or at least set
up)

∫∫
S F · dS.

Solution. The integral is∫ 1

0

∫ 2π

0
(2 sin(u), 3 cos(u), v)·(−3 sin u,−2 cosu, 0) du dv =

∫ 2π

0
−6 du = −12π.

8. Find the surface area of a sphere with radius r.

Solution. ∫ 2π

0

∫ π

0
|Tθ × Tϕ| dθ dϕ =

∫ 2π

0

∫ π

0
r2 sinϕdθ dϕ = 4πr2.

9. Let F (x, y, z) = (x, y, z) and let S be the sphere. Find
∫∫
F · dS. (Hint:

is there a shortcut?)

Solution. I believe the normal is n = sinϕ(x, y, z) = sinϕF so the integral
becomes∫ 2π

0

∫ π

0
F · (sinϕ)F dϕdθ =

∫∫
sinϕ|F |2 dϕ dθ =

∫∫
sinϕdϕdθ = 4π.

10. Let F = (2xz, 1, x2). Let c be the contour of straight lines that follow
the points

(0, 0, 0)→ (1, 0, 0)→ (1, 1, 0)→ (1, 1, 1)→ (0, 1, 1)→ (0, 0, 1)→ (0, 0, 0).

Find
∫
C F · ds. What is the arclength of c?

Solution. We see that F = ∇f where f(x, y, z) = x2z+ y. Since c is a closed
the fundamental theorem of calculus says that

∫
F · ds = 0. The arclength is

6.

11. Find the surface area of the region inside x2 +z2 = 2 and x2 +y2 +z2 = 4.
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Solution. First we have to find where the cylinder intersects the sphere. Plug-
ging x2 + z2 = 2 into the sphere equation, we get y2 + 2 = 4 so y = ±

√
2

as our answer. This is the y value where the intersections occur. Thus the
length of the cylinder is 2

√
2 and the radius is

√
2 so the surface area of the

cylinder part is 2πrh = 8π.
For the sphere part, we have to find the angle where these intersections

occur. We can also just assume this is happening vertically since its sym-
metric. Making a cross section of this shape for when, we notice that the
cylinder hits the sphere at (y, z) = (

√
2,
√

2) on a sphere of radius 4. Then
ϕ = arctan(

√
2/
√

2) = π/4. Thus our ending angle of the integral is π/4. So
the surface area of one the spherical caps is∫ 2π

0

∫ π/4

0
sinϕdϕdθ = 2π(1−

√
2/2).

In total we get π(8 + 4− 2
√

2).

12. Set up the line integral of the function f(x, y, z) = xyz around the
intersection of the cylinder x2 + y2 = 1 and the plane x = z.

Solution. The parametrization of the curve is c(t) = (cos t, sin t, cos t). Then
the integral is ∫ 2π

0
cos2 t sin t

√
2 sin2 t+ cos2 t dt.

13. Find the volume of the region outside of the cone x = 3
√
y2 + z2 and

inside the sphere x2 + y2 + z2 = 4.

Solution. Making everything vertical, the angle from the z-axis to the cone
is arctan 1/3 so volume is

V =
∫ 2

0

∫ 2π

0

∫ π

arctan 1/3
ρ2 sinϕdϕdθ dρ = 2π8

3

(
1 + 3√

10

)
.

14. Let s = 3x+ 2y and t = x−y. Find the integral
∫∫
D 3x2−xy−2y2 dx dy

where D is parallelogram (0, 0), (1, 1), (2,−3), and (3,−2) by change of
variables.

Solution. The region in s, t coordinates is 0 ≤ s ≤ 5 and 0 ≤ t ≤ 5. Then
x = s/5 + 2t/5 and y = s/5− 3t/5. The Jacobian |J | = 1/5 so the integral
becomes ∫∫

D
(3x+ 2y)(x− y) dx dy = 1

5

∫ 5

0

∫ 5

0
st ds dt = 125/4.
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15. Let F (x, y, z) = (x, y, z). Is there a vector field G such that ∇×G = F .
What if F (x, y, z) = (x, y,−2z)?

Solution. No. Yes. Take the div.

16. Let F = (x2 + y2, x2 − y2) and let c be the straight line from (2, 1) to
(3, 4). Find the line integral

∫
c F · ds.

Solution. The parametrization is l(t) = (2 + t, 1 + 3t) with t = 0 to t = 1. So
the integral is

∫ 1
0 F (l(t)) · (1, 3) dt = 34/3.

17. Let C be the cylinder 1 = x2 + z2 from −1/2 ≤ y ≤ 1 with outward
normal vector and let

F (x, y, z) = (xy, 0,−yz).

Find
∫∫
S F · dS using Stokes’ theorem.

Solution. Since ∇ · F = 0 then there is a G such that ∇ × G = F . By
Stokes’ we can integrate G around the two edges of the cylinder, each going
the opposite way. But then we can reapply Stokes’ theorem and integrate F
on any surface whose boundary is the two circles! We can pick two disks of
radius one. The disk D1 at y = −1/2 has normal n1 = (1, 0, 0) facing right,
while D2 at y = 1 has normal n2 = (−1, 0, 0) facing left.

So∫∫
S
F · dS =

∫∫
D1
F · dS +

∫∫
D2
F · dS =

∫∫
D
xz dA+

∫∫
D
−xz dA = 0.
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